Sokrates Stein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/949763/publications.pdf

Version: 2024-02-01

37 papers

2,808 citations

257450 24 h-index 36 g-index

37 all docs 37 docs citations

37 times ranked

5077 citing authors

#	Article	IF	CITATIONS
1	Deletion of fibroblast activation protein provides atheroprotection. Cardiovascular Research, 2021, 117, 1060-1069.	3.8	20
2	Modulating Sirtuin Biology and Nicotinamide Adenine Diphosphate Metabolism in Cardiovascular Diseaseâ€"From Bench to Bedside. Frontiers in Physiology, 2021, 12, 755060.	2.8	13
3	Macrophage NCOR1 protects from atherosclerosis by repressing a pro-atherogenic PPARÎ ³ signature. European Heart Journal, 2020, 41, 995-1005.	2.2	56
4	Role of the Nuclear Receptor Corepressor 1 (NCOR1) in Atherosclerosis and Associated Immunometabolic Diseases. Frontiers in Immunology, 2020, 11, 569358.	4.8	9
5	The NO-donor MPC-1011 stimulates angiogenesis and arteriogenesis and improves hindlimb ischemia via a cGMP-dependent pathway involving VEGF and SDF-1α. Atherosclerosis, 2020, 304, 30-38.	0.8	12
6	Implications of NAD ⁺ boosters in translational medicine. European Journal of Clinical Investigation, 2020, 50, e13334.	3.4	20
7	Sirt6 deletion in bone marrow-derived cells increases atherosclerosis – Central role of macrophage scavenger receptor 1. Journal of Molecular and Cellular Cardiology, 2020, 139, 24-32.	1.9	26
8	JCAD: from systems genetics identification to the experimental validation of a coronary artery disease risk locus. European Heart Journal, 2019, 40, 2409-2412.	2.2	4
9	Mouse Models for Atherosclerosis Research—Which Is My Line?. Frontiers in Cardiovascular Medicine, 2019, 6, 46.	2.4	118
10	Adipose tissue macrophage polarization in cardiovascular disease. European Journal of Preventive Cardiology, 2018, 25, 325-327.	1.8	0
11	Brain-derived neurotrophic factor Val66Met polymorphism in depression and thrombosis: SIRT1 as a possible mediator. European Heart Journal, 2017, 38, ehv692.	2.2	10
12	Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function. Nature Communications, 2017, 8, 480.	12.8	40
13	Neutrophils in cardiovascular disease. European Heart Journal, 2017, 38, 1702-1704.	2.2	62
14	Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. Journal of Hepatology, 2017, 66, 132-141.	3.7	115
15	Protective role of the co-stimulator CD27 receptor and regulatory T cells in early atherogenesis. European Heart Journal, 2017, 38, 3600-3602.	2.2	2
16	Impaired SUMOylation of nuclear receptor LRH-1 promotes nonalcoholic fatty liver disease. Journal of Clinical Investigation, 2017, 127, 583-592.	8.2	50
17	LRH-1-dependent programming of mitochondrial glutamine processing drives liver cancer. Genes and Development, 2016, 30, 1255-1260.	5.9	56
18	CardioPulse: Translational research in cardiovascular disease. European Heart Journal, 2016, 37, 1091-2.	2.2	1

#	Article	IF	CITATIONS
19	The Sirt1 activator SRT3025 provides atheroprotection in Apoeâ^'/â^' mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. European Heart Journal, 2015, 36, 51-59.	2.2	117
20	LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPAR \hat{I}^3 ligand synthesis. Nature Communications, 2015, 6, 6801.	12.8	46
21	Molecular basis for the regulation of the nuclear receptor LRH-1. Current Opinion in Cell Biology, 2015, 33, 26-34.	5.4	58
22	Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo. European Heart Journal, 2014, 35, 2839-2848.	2.2	82
23	TGR5 reduces macrophage migration through mTOR-induced C/EBP \hat{I}^2 differential translation. Journal of Clinical Investigation, 2014, 124, 5424-5436.	8.2	166
24	A SIRT7-Dependent Acetylation Switch of GABP \hat{l}^21 Controls Mitochondrial Function. Cell Metabolism, 2014, 20, 856-869.	16.2	214
25	SUMOylation-Dependent LRH-1/PROX1 Interaction Promotes Atherosclerosis by Decreasing Hepatic Reverse Cholesterol Transport. Cell Metabolism, 2014, 20, 603-613.	16.2	73
26	SIRT1 $\hat{a} \in$ An Anti-Inflammatory Pathway at the Crossroads Between Metabolic Disease and Atherosclerosis. Current Vascular Pharmacology, 2012, 10, 693-696.	1.7	59
27	Protective roles of SIRT1 in atherosclerosis. Cell Cycle, 2011, 10, 640-647.	2.6	211
28	Hyperactive S6K1 Mediates Oxidative Stress and Endothelial Dysfunction in Aging: Inhibition by Resveratrol. PLoS ONE, 2011, 6, e19237.	2.5	131
29	Profibrotic potential of Prominin-1+epithelial progenitor cells in pulmonary fibrosis. Respiratory Research, 2011, 12, 126.	3.6	7
30	Sirt1 inhibition promotes in vivo arterial thrombosis and tissue factor expression in stimulated cells. Cardiovascular Research, 2011, 89, 464-472.	3.8	97
31	Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. Journal of Clinical Investigation, 2011, 121, 2693-2708.	8.2	464
32	ApoEâ $^{\prime}$ /â $^{\prime}$ PGC-1Î \pm â $^{\prime}$ /â $^{\prime}$ Mice Display Reduced IL-18 Levels and Do Not Develop Enhanced Atherosclerosis. PLoS ONE, 2010, 5, e13539.	2.5	29
33	SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. European Heart Journal, 2010, 31, 2301-2309.	2.2	189
34	SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice. Aging, 2010, 2, 353-360.	3.1	132
35	A Dual Role of CD4 + T Cells in Adipose Tissue?. Circulation Research, 2009, 104, 928-930.	4.5	6
36	Multifactorial Regulation of a Hox Target Gene. PLoS Genetics, 2009, 5, e1000412.	3.5	23

3

#	Article	IF	CITATIONS
37	Heart-Infiltrating Prominin-1 ⁺ /CD133 ⁺ Progenitor Cells Represent the Cellular Source of Transforming Growth Factor β–Mediated Cardiac Fibrosis in Experimental Autoimmune Myocarditis. Circulation Research, 2009, 105, 462-470.	4.5	90