
Ivan D Dimitrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9497598/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Virtual Screening and Hit Selection of Natural Compounds as Acetylcholinesterase Inhibitors. Molecules, 2022, 27, 3139.	3.8	10
2	Clustering of Red/White Wine and Allergen/Non-Allergen Data Sets by Using Descriptor Fingerprints. IOP Conference Series: Materials Science and Engineering, 2021, 1031, 012053.	0.6	0
3	Predicting Immunogenicity Risk in Biopharmaceuticals. Symmetry, 2021, 13, 388.	2.2	14
4	Effects of Curcumin and Ferulic Acid on the Folding of Amyloid-Î ² Peptide. Molecules, 2021, 26, 2815.	3.8	10
5	UHPLC-Orbitrap-MS Tentative Identification of 51 Oleraceins (Cyclo-Dopa Amides) in Portulaca oleracea L. Cluster Analysis and MS2 Filtering by Mass Difference. Plants, 2021, 10, 1921.	3.5	4
6	Two Faces of Milk Proteins Peptides with Both Allergenic and Multidimensional Health Beneficial Impact—Integrated In Vitro/In Silico Approach. Foods, 2021, 10, 163.	4.3	5
7	Bacterial Immunogenicity Prediction by Machine Learning Methods. Vaccines, 2020, 8, 709.	4.4	12
8	Curcumin Inhibits the Primary Nucleation of Amyloid-Beta Peptide: A Molecular Dynamics Study. Biomolecules, 2020, 10, 1323.	4.0	36
9	Cellular polyamines condense hyperphosphorylated Tau, triggering Alzheimer's disease. Scientific Reports, 2020, 10, 10098.	3.3	12
10	AllerScreener – A Server for Allergenicity and Cross-Reactivity Prediction. Cybernetics and Information Technologies, 2020, 20, 175-184.	1.1	2
11	Molecular Dynamics Simulations of Acetylcholinesterase – Beta-Amyloid Peptide Complex. Cybernetics and Information Technologies, 2020, 20, 140-154.	1.1	0
12	An Alignment-Independent Platform for Allergenicity Prediction. Methods in Molecular Biology, 2020, 2131, 147-153.	0.9	3
13	Bridging solvent molecules mediate RNase A – Ligand binding. PLoS ONE, 2019, 14, e0224271.	2.5	6
14	VaxiJen Dataset of Bacterial Immunogens: An Update. Current Computer-Aided Drug Design, 2019, 15, 398-400.	1.2	25
15	Bridging solvent molecules mediate RNase A – Ligand binding. , 2019, 14, e0224271.		Ο
16	Bridging solvent molecules mediate RNase A – Ligand binding. , 2019, 14, e0224271.		0
17	Bridging solvent molecules mediate RNase A – Ligand binding. , 2019, 14, e0224271.		0
18	Bridging solvent molecules mediate RNase A – Ligand binding. , 2019, 14, e0224271.		0

2

Ivan D Dimitrov

#	Article	IF	CITATIONS
19	Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 768-776.	5.2	32
20	Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins. Food and Chemical Toxicology, 2018, 112, 97-107.	3.6	36
21	Proteochemometrics for the Prediction of Peptide Binding to Multiple HLA Class II Proteins. Methods in Pharmacology and Toxicology, 2018, , 395-404.	0.2	1
22	Proteochemometrics-Based Prediction of Peptide Binding to HLA-DP Proteins. Journal of Chemical Information and Modeling, 2018, 58, 297-304.	5.4	13
23	Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2 H -chromene and coumarin scaffold. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 223-227.	2.2	62
24	Immunogenicity Prediction by VaxiJen: A Ten Year Overview. Journal of Proteomics and Bioinformatics, 2017, 10, .	0.4	26
25	A Cohesive and Integrated Platform for Immunogenicity Prediction. Methods in Molecular Biology, 2016, 1404, 761-770.	0.9	6
26	Associations between Milk and Egg Allergens and the HLA-DRB1/DQ Polymorphism: A Bioinformatics Approach. International Archives of Allergy and Immunology, 2016, 169, 33-39.	2.1	18
27	Proteochemometrics for the Prediction of Binding to the MHC Proteins. Letters in Drug Design and Discovery, 2016, 14, 2-9.	0.7	2
28	Peptide Binding Prediction to Five Most Frequent HLAâ€DQ Proteins – a Proteochemometric Approach. Molecular Informatics, 2015, 34, 467-476.	2.5	4
29	Molecular Docking Study on Galantamine Derivatives as Cholinesterase Inhibitors. Molecular Informatics, 2015, 34, 394-403.	2.5	24
30	Allergenicity prediction by artificial neural networks. Journal of Chemometrics, 2014, 28, 282-286.	1.3	11
31	AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics, 2014, 30, 846-851.	4.1	471
32	AllerTOP v.2—a server for in silico prediction of allergens. Journal of Molecular Modeling, 2014, 20, 2278.	1.8	663
33	Histidine Hydrogen Bonding in MHC at pH 5 and pH 7 Modeled by Molecular Docking and Molecular Dynamics Simulations. Current Computer-Aided Drug Design, 2014, 10, 41-49.	1.2	9
34	AllerTOP - a server for in silico prediction of allergens. BMC Bioinformatics, 2013, 14, S4.	2.6	293
35	EpiDOCK: a molecular docking-based tool for MHC class II binding prediction. Protein Engineering, Design and Selection, 2013, 26, 631-634.	2.1	51
36	Quantitative Prediction of Peptide Binding to HLA-DP1 Protein. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2013, 10, 811-815.	3.0	4

Ivan D Dimitrov

#	Article	IF	CITATIONS
37	Peptide binding to HLA-DP proteins at pH 5.0 and pH 7.0: a quantitative molecular docking study. BMC Structural Biology, 2012, 12, 20.	2.3	17
38	Peptide binding prediction for the human class II MHC allele HLA-DP2: a molecular docking approach. BMC Structural Biology, 2011, 11, 32.	2.3	52
39	HLAâ€DP2 binding prediction by molecular dynamics simulations. Protein Science, 2011, 20, 1918-1928.	7.6	16
40	MHC Class II Binding Prediction by Molecular Docking. Molecular Informatics, 2011, 30, 368-375.	2.5	16
41	Peptide binding to the HLA-DRB1 supertype: A proteochemometrics analysis. European Journal of Medicinal Chemistry, 2010, 45, 236-243.	5.5	27
42	MHC Class II Binding Prediction—A Little Help from a Friend. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-8.	3.0	20
43	EpiTOP—a proteochemometric tool for MHC class II binding prediction. Bioinformatics, 2010, 26, 2066-2068.	4.1	55
44	Topochemical kinetics of xylanase action on kraft pulp. Biocatalysis and Biotransformation, 2005, 23, 33-36.	2.0	2
45	Totally chlorine-free bleaching of flax pulp. Bioresource Technology, 2002, 85, 79-85.	9.6	23
46	Kinetic Model of Xylanase Action on Kraft Pulp. Reaction Kinetics and Catalysis Letters, 2000, 71, 231-238.	0.6	6