Sai Yerneni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9497244/publications.pdf

Version: 2024-02-01

414414 471509 2,666 31 17 32 h-index citations g-index papers 32 32 32 4084 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Characterization of systemic immunosuppression by IDH mutant glioma small extracellular vesicles. Neuro-Oncology, 2022, 24, 197-209.	1.2	21
2	Engineering pro-angiogenic biomaterials via chemoselective extracellular vesicle immobilization. Biomaterials, 2022, 281, 121357.	11.4	20
3	Radioiodination of extravesicular surface constituents to study the biocorona, cell trafficking and storage stability of extracellular vesicles. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130069.	2.4	16
4	Controlled Release of Exosomes Using Atom Transfer Radical Polymerization-Based Hydrogels. Biomacromolecules, 2022, 23, 1713-1722.	5.4	17
5	A molecular link between cell wall biosynthesis, translation fidelity, and stringent response in <i>Streptococcus pneumoniae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	8
6	Novel TGFβ Inhibitors Ameliorate Oral Squamous Cell Carcinoma Progression and Improve the Antitumor Immune Response of Anti–PD-L1 Immunotherapy. Molecular Cancer Therapeutics, 2021, 20, 1102-1111.	4.1	11
7	Grafting polymer brushes by <scp>ATRP</scp> from functionalized poly(ether ether ketone) microparticles. Polymers for Advanced Technologies, 2021, 32, 3948-3954.	3.2	5
8	Pneumococcal Extracellular Vesicles Modulate Host Immunity. MBio, 2021, 12, e0165721.	4.1	19
9	Engineering exosome polymer hybrids by atom transfer radical polymerization. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	63
10	Cell trafficking and regulation of osteoblastogenesis by extracellular vesicle associated bone morphogenetic protein 2. Journal of Extracellular Vesicles, 2021, 10, e12155.	12.2	16
11	Biocompatible photoinduced CuAAC using sodium pyruvate. Chemical Communications, 2021, 57, 12844-12847.	4.1	5
12	Development and Characterization of Novel Conductive Sensing Fibers for In Vivo Nerve Stimulation. Sensors, 2021, 21, 7581.	3.8	1
13	Tumor-derived exosomes promote angiogenesis via adenosine A2B receptor signaling. Angiogenesis, 2020, 23, 599-610.	7.2	73
14	A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing <i>In Vivo</i> . Nano Letters, 2020, 20, 5167-5175.	9.1	72
15	Arginase-1+ Exosomes from Reprogrammed Macrophages Promote Glioblastoma Progression. International Journal of Molecular Sciences, 2020, 21, 3990.	4.1	59
16	Simultaneous Inhibition of Glycolysis and Oxidative Phosphorylation Triggers a Multi-Fold Increase in Secretion of Exosomes: Possible Role of $2\hat{a} \in ^2$, $3\hat{a} \in ^2$ -cAMP. Scientific Reports, 2020, 10, 6948.	3.3	30
17	An isocyanide ligand for the rapid quenching and efficient removal of copper residues after Cu/TEMPO-catalyzed aerobic alcohol oxidation and atom transfer radical polymerization. Chemical Science, 2020, 11, 4251-4262.	7.4	23
18	Inkjet Printing of Curing Agent on Thin PDMS for Local Tailoring of Mechanical Properties. Macromolecular Rapid Communications, 2020, 41, 1900569.	3.9	4

#	Article	IF	CITATIONS
19	3D bioprinting of collagen to rebuild components of the human heart. Science, 2019, 365, 482-487.	12.6	1,116
20	Covalent Poly(lactic acid) Nanoparticles for the Sustained Delivery of Naloxone. ACS Applied Bio Materials, 2019, 2, 3418-3428.	4.6	18
21	Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers. ACS Nano, 2019, 13, 10555-10565.	14.6	78
22	Degradable Polymer Stars Based on Tannic Acid Cores by ATRP. Polymers, 2019, 11, 752.	4.5	20
23	Optimization of cell culture conditions for exosome isolation using mini-size exclusion chromatography (mini-SEC). Experimental Cell Research, 2019, 378, 149-157.	2.6	66
24	Bioprinting exosome-like extracellular vesicle microenvironments. Bioprinting, 2019, 13, e00041.	5.8	34
25	Clinical Significance of PD-L1+ Exosomes in Plasma of Head and Neck Cancer Patients. Clinical Cancer Research, 2018, 24, 896-905.	7.0	464
26	Molecular and Functional Profiles of Exosomes From HPV(+) and HPV(â^') Head and Neck Cancer Cell Lines. Frontiers in Oncology, 2018, 8, 445.	2.8	50
27	Osteoconductive Enhancement of Polyether Ether Ketone: A Mild Covalent Surface Modification Approach. ACS Applied Bio Materials, 2018, 1, 1047-1055.	4.6	15
28	Exosomes from HNSCC Promote Angiogenesis through Reprogramming of Endothelial Cells. Molecular Cancer Research, 2018, 16, 1798-1808.	3.4	143
29	Plasma-derived Exosomes Reverse Epithelial-to-Mesenchymal Transition after Photodynamic Therapy of Patients with Head and Neck Cancer. Oncoscience, 2018, 5, 75-87.	2.2	36
30	Circulating exosomes carrying an immunosuppressive cargo interfere with cellular immunotherapy in acute myeloid leukemia. Scientific Reports, 2017, 7, 14684.	3.3	152
31	Controlled Release of Small Molecules from Elastomers for Reducing Epidermal Downgrowth in Percutaneous Devices. ACS Biomaterials Science and Engineering, 2016, 2, 1464-1470.	5.2	9