Judith Klumperman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9496337/publications.pdf

Version: 2024-02-01

28274 28297 12,823 110 55 citations h-index papers

g-index 157 157 157 19011 docs citations times ranked citing authors all docs

105

#	Article	IF	Citations
1	Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nature Reviews Molecular Cell Biology, 2009, 10, 623-635.	37.0	1,320
2	Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature, 2010, 465, 942-946.	27.8	1,303
3	Trafficking and function of the tetraspanin CD63. Experimental Cell Research, 2009, 315, 1584-1592.	2.6	605
4	Sorting Nexin-1 Mediates Tubular Endosome-to-TGN Transport through Coincidence Sensing of High-Curvature Membranes and 3-Phosphoinositides. Current Biology, 2004, 14, 1791-1800.	3.9	414
5	Autophagy Proteins Regulate the Secretory Component of Osteoclastic Bone Resorption. Developmental Cell, 2011, 21, 966-974.	7.0	401
6	Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. Journal of Cell Biology, 2008, 183, 101-116.	5.2	365
7	Association of the AP-3 Adaptor Complex with Clathrin. Science, 1998, 280, 431-434.	12.6	362
8	Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies. Neuron, 2018, 100, 1322-1336.e7.	8.1	330
9	Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. Journal of Cell Biology, 2004, 164, 1065-1076.	5.2	329
10	Bilayered Clathrin Coats on Endosomal Vacuoles Are Involved in Protein Sorting toward Lysosomes. Molecular Biology of the Cell, 2002, 13, 1313-1328.	2.1	319
11	Vesicular Tubular Clusters between the ER and Golgi Mediate Concentration of Soluble Secretory Proteins by Exclusion from COPI-Coated Vesicles. Cell, 1999, 98, 81-90.	28.9	298
12	The Complex Ultrastructure of the Endolysosomal System. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016857-a016857.	5.5	282
13	Mannose 6–Phosphate Receptors Are Sorted from Immature Secretory Granules via Adaptor Protein AP-1, Clathrin, and Syntaxin 6–positive Vesicles. Journal of Cell Biology, 1998, 141, 359-371.	5.2	277
14	Endosomes are specialized platforms for bacterial sensing and NOD2 signalling. Nature, 2014, 509, 240-244.	27.8	259
15	Mesenchymal Stromal/stem Cell-derived Extracellular Vesicles Promote Human Cartilage Regeneration <i>In Vitro</i> . Theranostics, 2018, 8, 906-920.	10.0	252
16	Vamp-7 Mediates Vesicular Transport from Endosomes to Lysosomes. Journal of Cell Biology, 1999, 146, 765-776.	5.2	179
17	Rab14 Is Involved in Membrane Trafficking between the Golgi Complex and Endosomes. Molecular Biology of the Cell, 2004, 15, 2218-2229.	2.1	177
18	Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nature Cell Biology, 2006, 8, 377-383.	10.3	173

#	Article	IF	Citations
19	Correlative light-electron microscopy (CLEM) combining live-cell imaging and immunolabeling of ultrathin cryosections. Nature Methods, 2008, 5, 973-980.	19.0	170
20	EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution. Development (Cambridge), 2007, 134, 2913-2923.	2.5	169
21	Differential Sorting of Lysosomal Enzymes Out of the Regulated Secretory Pathway in Pancreatic β-Cells. Journal of Cell Biology, 1997, 137, 595-608.	5. 2	167
22	The UIM domain of Hrs couples receptor sorting to vesicle formation. Journal of Cell Science, 2003, 116, 4169-4179.	2.0	164
23	Single-cell analysis uncovers that metabolic reprogramming by ErbB2 signaling is essential for cardiomyocyte proliferation in the regenerating heart. ELife, 2019, 8, .	6.0	162
24	Peri-Golgi vesicles contain retrograde but not anterograde proteins consistent with the cisternal progression model of intra-Golgi transport. Journal of Cell Biology, 2001, 155, 1213-1224.	5.2	161
25	Architecture of the Mammalian Golgi. Cold Spring Harbor Perspectives in Biology, 2011, 3, a005181-a005181.	5 . 5	154
26	Loss of Syntaxin 3 Causes Variant Microvillus Inclusion Disease. Gastroenterology, 2014, 147, 65-68.e10.	1.3	151
27	SNX1 Defines an Early Endosomal Recycling Exit for Sortilin and Mannose 6â€Phosphate Receptors. Traffic, 2008, 9, 380-393.	2.7	145
28	Differential Roles of Syntaxin 7 and Syntaxin 8 in Endosomal Trafficking. Molecular Biology of the Cell, 1999, 10, 3891-3908.	2.1	130
29	Transport between ER and Golgi. Current Opinion in Cell Biology, 2000, 12, 445-449.	5.4	130
30	hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins. Nature Communications, 2013, 4, 1361.	12.8	129
31	Vesicle-associated Membrane Protein 4 is Implicated in <i>Trans</i> Golgi Network Vesicle Trafficking. Molecular Biology of the Cell, 1999, 10, 1957-1972.	2.1	127
32	The maturing role of COPI vesicles in intra-Golgi transport. Nature Reviews Molecular Cell Biology, 2005, 6, 812-817.	37.0	122
33	Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Developmental Cell, 2016, 39, 44-60.	7.0	114
34	Atg5-Independent Sequestration of Ubiquitinated Mycobacteria. PLoS Pathogens, 2009, 5, e1000430.	4.7	109
35	Imaging and imagination: understanding the endo-lysosomal system. Histochemistry and Cell Biology, 2008, 129, 253-266.	1.7	107
36	Sorting nexin-2 is associated with tubular elements of the early endosome, but is not essential for retromer-mediated endosome-to-TGN transport. Journal of Cell Science, 2005, 118, 4527-4539.	2.0	99

#	Article	IF	Citations
37	The 2018 correlative microscopy techniques roadmap. Journal Physics D: Applied Physics, 2018, 51, 443001.	2.8	99
38	Death-receptor activation halts clathrin-dependent endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10283-10288.	7.1	98
39	The <scp>HOPS</scp> Proteins <scp>hVps41</scp> and <scp>hVps39</scp> Are Required for Homotypic and Heterotypic Late Endosome Fusion. Traffic, 2013, 14, 219-232.	2.7	98
40	Lysosome-Associated Membrane Proteins (LAMP) Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 678-694.	4.5	95
41	Dynamic kinetochore size regulation promotes microtubule capture and chromosome biorientation in mitosis. Nature Cell Biology, 2018, 20, 800-810.	10.3	92
42	Neuron Specific Rab4 Effector GRASP-1 Coordinates Membrane Specialization and Maturation of Recycling Endosomes. PLoS Biology, 2010, 8, e1000283.	5.6	86
43	Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity. Journal of Biological Chemistry, 2015, 290, 30280-30290.	3.4	84
44	CORVET, CHEVI and HOPS – multisubunit tethers of the endo-lysosomal system in health and disease. Journal of Cell Science, 2019, 132, .	2.0	79
45	EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. Journal of Cell Biology, 2017, 216, 3179-3198.	5.2	76
46	Rabaptin-5alpha/rabaptin-4 serves as a linker between rab4 and gamma1-adaptin in membrane recycling from endosomes. EMBO Journal, 2003, 22, 2645-2657.	7.8	74
47	Associations among genotype, clinical phenotype, and intracellular localization of trafficking proteins in ARC syndrome. Human Mutation, 2012, 33, 1656-1664.	2.5	74
48	Single organelle dynamics linked to 3D structure by correlative liveâ€cell imaging and 3D electron microscopy. Traffic, 2018, 19, 354-369.	2.7	72
49	The ubiquitinâ€conjugating enzyme <scp>UBE</scp> 2 <scp>QL</scp> 1 coordinates lysophagy in response to endolysosomal damage. EMBO Reports, 2019, 20, e48014.	4.5	71
50	An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12408-12413.	7.1	67
51	SNARE Membrane Trafficking Dynamics In Vivo. Journal of Cell Biology, 1999, 144, 869-881.	5.2	66
52	Endosomes: multipurpose designs for integrating housekeeping and specialized tasks. Histochemistry and Cell Biology, 2002, 117, 91-104.	1.7	66
53	An Organoid for Woven Bone. Advanced Functional Materials, 2021, 31, 2010524.	14.9	65
54	Rab4 Regulates Formation of Synaptic-like Microvesicles from Early Endosomes in PC12 Cells. Molecular Biology of the Cell, 2001, 12, 3703-3715.	2.1	62

#	Article	IF	Citations
55	ATPase-deficient hVPS4 impairs formation of internal endosomal vesicles and stabilizes bilayered clathrin coats on endosomal vacuoles. Journal of Cell Science, 2004, 117, 1699-1708.	2.0	61
56	Synaptic Vesicles Form by Budding from Tubular Extensions of Sorting Endosomes in PC12 Cells. Molecular Biology of the Cell, 1999, 10, 4163-4176.	2.1	58
57	<scp>SKIP</scp> ― <scp>HOPS</scp> recruits <scp>TBC</scp> 1D15 for a Rab7â€toâ€Arl8b identity switch to control late endosome transport. EMBO Journal, 2020, 39, e102301.	7.8	58
58	A Novel Flat-embedding Method to Prepare Ultrathin Cryosections from Cultured Cells in Their In Situ Orientation. Journal of Histochemistry and Cytochemistry, 2002, 50, 1067-1080.	2.5	52
59	The ER to Golgi Interface is the Major Concentration Site of Secretory Proteins in the Exocrine Pancreatic Cell. Traffic, 2001, 2, 831-838.	2.7	46
60	Cathepsin D and its newly identified transport receptor Sez6l2 can modulate neurite outgrowth. Journal of Cell Science, 2016, 129, 557-68.	2.0	46
61	α-Synuclein fibrils subvert lysosome structure and function for the propagation of protein misfolding between cells through tunneling nanotubes. PLoS Biology, 2021, 19, e3001287.	5.6	45
62	Electron microscopy in cell biology: integrating structure and function. Nature Reviews Molecular Cell Biology, 2003, Suppl, SS6-10.	37.0	44
63	Disruption of the Manâ€6â€P Targeting Pathway in Mice Impairs Osteoclast Secretory Lysosome Biogenesis. Traffic, 2011, 12, 912-924.	2.7	43
64	Apoptosis-linked Gene-2 (ALG-2)/Sec31 Interactions Regulate Endoplasmic Reticulum (ER)-to-Golgi Transport. Journal of Biological Chemistry, 2014, 289, 23609-23628.	3.4	43
65	Vps3 and Vps8 control integrin trafficking from early to recycling endosomes and regulate integrin-dependent functions. Nature Communications, 2018, 9, 792.	12.8	40
66	rab4 Function in Membrane Recycling from Early Endosomes Depends on a Membrane to Cytoplasm Cycle. Journal of Biological Chemistry, 2002, 277, 32029-32035.	3.4	38
67	Ultrastructural Characterization of Membrane Rearrangements Induced by Porcine Epidemic Diarrhea Virus Infection. Viruses, 2017, 9, 251.	3.3	37
68	Fluorescently Labelled Silica Coated Gold Nanoparticles as Fiducial Markers for Correlative Light and Electron Microscopy. Scientific Reports, 2018, 8, 13625.	3.3	35
69	Apolipoprotein L1-Specific Antibodies Detect Endogenous APOL1 inside the Endoplasmic Reticulum and on the Plasma Membrane of Podocytes. Journal of the American Society of Nephrology: JASN, 2020, 31, 2044-2064.	6.1	33
70	Quantitative correlative microscopy reveals the ultrastructural distribution of endogenous endosomal proteins. Journal of Cell Biology, 2022, 221, .	5.2	33
71	<i>Egfl7</i> knockdown causes defects in the extension and junctional arrangements of endothelial cells during zebrafish vasculogenesis. Developmental Dynamics, 2008, 237, 580-591.	1.8	32
72	Lysosomal Membrane Protein Composition, Acidic pH and Sterol Content are Regulated via a Lightâ€Dependent Pathway in Metazoan Cells. Traffic, 2011, 12, 1037-1055.	2.7	32

#	Article	IF	Citations
73	ER–Âlysosome contacts at a pre-axonal region regulate axonal lysosome availability. Nature Communications, 2021, 12, 4493.	12.8	32
74	Vps33B is required for delivery of endocytosed cargo to lysosomes. Traffic, 2015, 16, 1288-1305.	2.7	30
75	Vacuolization of mucolipidosis type II mouse exocrine gland cells represents accumulation of autolysosomes. Molecular Biology of the Cell, 2011, 22, 1135-1147.	2.1	27
76	A mouse model for SPG48 reveals a block of autophagic flux upon disruption of adaptor protein complex five. Neurobiology of Disease, 2019, 127, 419-431.	4.4	26
77	Neurodegenerative <i>VPS41</i> variants inhibit HOPS function and mTORC1â€dependent TFEB/TFE3 regulation. EMBO Molecular Medicine, 2021, 13, e13258.	6.9	26
78	High accuracy, fiducial marker-based image registration of correlative microscopy images. Scientific Reports, 2019, 9, 3211.	3.3	24
79	The stress-sensing domain of activated IRE1 \hat{l}_{\pm} forms helical filaments in narrow ER membrane tubes. Science, 2021, 374, 52-57.	12.6	24
80	The hepatic WASH complex is required for efficient plasma LDL and HDL cholesterol clearance. JCI Insight, 2019, 4, .	5.0	24
81	Cysteamine–bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis. EMBO Molecular Medicine, 2021, 13, e13067.	6.9	23
82	Identification of the ubiquitin ligase Triad1 as a regulator of endosomal transport. Biology Open, 2012, 1, 607-614.	1.2	21
83	Aquaporin-3 regulates endosome-to-cytosol transfer via lipid peroxidation for cross presentation. PLoS ONE, 2020, 15, e0238484.	2.5	20
84	HEPES activates a MiT/TFE-dependent lysosomal-autophagic gene network in cultured cells: A call for caution. Autophagy, 2018, 14, 437-449.	9.1	18
85	High Resolution Proteomic Analysis of Subcellular Fractionated Boar Spermatozoa Provides Comprehensive Insights Into Perinuclear Theca-Residing Proteins. Frontiers in Cell and Developmental Biology, 2022, 10, 836208.	3.7	16
86	DGAT2 partially compensates for lipid-induced ER stress in human DGAT1-deficient intestinal stem cells. Journal of Lipid Research, 2019, 60, 1787-1800.	4.2	14
87	HC StratoMineR: A Web-Based Tool for the Rapid Analysis of High-Content Datasets. Assay and Drug Development Technologies, 2016, 14, 439-452.	1.2	11
88	A paralog-specific role of COPI vesicles in the neuronal differentiation of mouse pluripotent cells. Life Science Alliance, 2020, 3, e202000714.	2.8	11
89	Integrated super resolution fluorescence microscopy and transmission electron microscopy. Ultramicroscopy, 2020, 215, 113007.	1.9	10
90	Pancreatic β-Cell–Specific Deletion of VPS41 Causes Diabetes Due to Defects in Insulin Secretion. Diabetes, 2021, 70, 436-448.	0.6	10

#	Article	IF	Citations
91	Visualizing the cellular route of entry of a cystine-knot peptide with Xfect transfection reagent by electron microscopy. Scientific Reports, 2019, 9, 6907.	3.3	9
92	Wiskott-Aldrich syndrome protein restricts cGAS/STING activation by dsDNA immune complexes. JCI Insight, 2020, 5, .	5.0	9
93	Quantitative 3D microscopy highlights altered von Willebrand factor αâ€granule storage in patients with von Willebrand disease with distinct pathogenic mechanisms. Research and Practice in Thrombosis and Haemostasis, 2021, 5, e12595.	2.3	7
94	Quantifying lymphocyte vacuolization serves as a measure of CLN3 disease severity. JIMD Reports, 2020, 54, 87-97.	1.5	6
95	An optimized protocol for immuno-electron microscopy of endogenous LC3. Autophagy, 2022, 18, 3004-3022.	9.1	6
96	Correlative Organelle Microscopy: Fluorescence Guided Volume Electron Microscopy of Intracellular Processes. Frontiers in Cell and Developmental Biology, 2022, 10, 829545.	3.7	6
97	Bimodal endocytic probe for three-dimensional correlative light and electron microscopy. Cell Reports Methods, 2022, 2, 100220.	2.9	6
98	TGN exit of the cation-independent mannose 6-phosphate receptor does not require acid hydrolase binding. Cellular Logistics, 2014, 4, e954441.	0.9	5
99	Optimization of negative stage bias potential for faster imaging in large-scale electron microscopy. Journal of Structural Biology: X, 2021, 5, 100046.	1.3	4
100	The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2022, 45, 353-365.	3.6	4
101	FER regulates endosomal recycling and is a predictor for adjuvant taxane benefit in breast cancer. Cell Reports, 2022, 39, 110584.	6.4	4
102	Improving Comprehension Efficiency of High Content Screening Data Through Interactive Visualizations. Assay and Drug Development Technologies, 2017, 15, 247-256.	1.2	3
103	Understanding membrane traffic from molecular ensemble, energetics, and the cell biology of participant components. Current Opinion in Cell Biology, 2021, 71, iii-vi.	5.4	2
104	Fatty acylation enhances the cellular internalization and cytosolic distribution of a cystine-knot peptide. IScience, 2021, 24, 103220.	4.1	2
105	HTS-IA. International Journal of Healthcare Information Systems and Informatics, 2013, 8, 17-31.	0.9	1
106	Feasibility of Immuno-TRITC Labeling in Integrated 3D CLEM. Microscopy and Microanalysis, 2016, 22, 64-65.	0.4	0
107	Aquaporin-3 regulates endosome-to-cytosol transfer via lipid peroxidation for cross presentation. , 2020, 15, e0238484.		0
108	Aquaporin-3 regulates endosome-to-cytosol transfer via lipid peroxidation for cross presentation., 2020, 15, e0238484.		0

#	Article	IF	CITATIONS
109	Aquaporin-3 regulates endosome-to-cytosol transfer via lipid peroxidation for cross presentation. , 2020, 15, e0238484.		o
110	Aquaporin-3 regulates endosome-to-cytosol transfer via lipid peroxidation for cross presentation. , 2020, 15, e0238484.		0