Erich A Nigg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9496309/publications.pdf

Version: 2024-02-01

221 papers 37,240 citations

101 h-index 187 g-index

227 all docs

227 docs citations

times ranked

227

25960 citing authors

#	Article	IF	CITATIONS
1	Mitotic kinases as regulators of cell division and its checkpoints. Nature Reviews Molecular Cell Biology, 2001, 2, 21-32.	16.1	1,356
2	Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis. Science Signaling, 2010, 3, ra3.	1.6	1,319
3	Proteomic characterization of the human centrosome by protein correlation profiling. Nature, 2003, 426, 570-574.	13.7	1,204
4	Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature, 1997, 386, 779-787.	13.7	983
5	Polo-like kinases and the orchestration of cell division. Nature Reviews Molecular Cell Biology, 2004, 5, 429-441.	16.1	964
6	Cyclin-dependent protein kinases: Key regulators of the eukaryotic cell cycle. BioEssays, 1995, 17, 471-480.	1.2	866
7	Centrioles, Centrosomes, and Cilia in Health and Disease. Cell, 2009, 139, 663-678.	13.5	808
8	The Polo kinase Plk4 functions in centriole duplication. Nature Cell Biology, 2005, 7, 1140-1146.	4.6	740
9	Centrosome aberrations: cause or consequence of cancer progression?. Nature Reviews Cancer, 2002, 2, 815-825.	12.8	667
10	Plk4-Induced Centriole Biogenesis in Human Cells. Developmental Cell, 2007, 13, 190-202.	3.1	606
11	Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO Journal, 2002, 21, 483-492.	3.5	577
11	Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO Journal, 2002, 21, 483-492. Active cyclin B1–Cdk1 first appears on centrosomes in prophase. Nature Cell Biology, 2003, 5, 143-148.	3.5 4.6	577
	p53-/- cells. EMBO Journal, 2002, 21, 483-492.		
12	p53-/- cells. EMBO Journal, 2002, 21, 483-492. Active cyclin B1–Cdk1 first appears on centrosomes in prophase. Nature Cell Biology, 2003, 5, 143-148. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription	4.6	540
12 13	p53-/- cells. EMBO Journal, 2002, 21, 483-492. Active cyclin B1–Cdk1 first appears on centrosomes in prophase. Nature Cell Biology, 2003, 5, 143-148. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nature Genetics, 2006, 38, 674-681. Human TPX2 is required for targeting Aurora-A kinase to the spindle. Journal of Cell Biology, 2002, 158,	4.6 9.4	540 535
12 13 14	p53-/- cells. EMBO Journal, 2002, 21, 483-492. Active cyclin B1–Cdk1 first appears on centrosomes in prophase. Nature Cell Biology, 2003, 5, 143-148. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nature Genetics, 2006, 38, 674-681. Human TPX2 is required for targeting Aurora-A kinase to the spindle. Journal of Cell Biology, 2002, 158, 617-623. The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nature Cell	4.6 9.4 2.3	540 535 516
12 13 14	Active cyclin B1–Cdk1 first appears on centrosomes in prophase. Nature Cell Biology, 2003, 5, 143-148. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nature Genetics, 2006, 38, 674-681. Human TPX2 is required for targeting Aurora-A kinase to the spindle. Journal of Cell Biology, 2002, 158, 617-623. The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nature Cell Biology, 2011, 13, 1154-1160. The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene, 2005,	4.6 9.4 2.3	540 535 516 511

#	Article	IF	Citations
19	The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell, 1994, 79, 1093-1101.	13.5	445
20	Centrosome duplication in mammalian somatic cells requires E2F and Cdk2–Cyclin A. Nature Cell Biology, 1999, 1, 88-93.	4.6	431
21	Polo-like kinase-1 is a target of the DNA damage checkpoint. Nature Cell Biology, 2000, 2, 672-676.	4.6	431
22	The Dissociation of Cohesin from Chromosomes in Prophase Is Regulated by Polo-like Kinase. Molecular Cell, 2002, 9, 515-525.	4.5	410
23	Role of Hec1 in Spindle Checkpoint Signaling and Kinetochore Recruitment of Mad1/Mad2. Science, 2002, 297, 2267-2270.	6.0	399
24	C-Nap1, a Novel Centrosomal Coiled-Coil Protein and Candidate Substrate of the Cell Cycle–regulated Protein Kinase Nek2. Journal of Cell Biology, 1998, 141, 1563-1574.	2.3	398
25	Borealin. Journal of Cell Biology, 2004, 166, 179-191.	2.3	388
26	Once and only once: mechanisms of centriole duplication and their deregulation in disease. Nature Reviews Molecular Cell Biology, 2018, 19, 297-312.	16.1	367
27	Polo-like kinases: positive regulators of cell division from start to finish. Current Opinion in Cell Biology, 1998, 10, 776-783.	2.6	342
28	Control of Centriole Length by CPAP and CP110. Current Biology, 2009, 19, 1005-1011.	1.8	315
29	3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biology Open, 2012, 1, 965-976.	0.6	309
30	Structure of a Survivin–Borealin–INCENP Core Complex Reveals How Chromosomal Passengers Travel Together. Cell, 2007, 131, 271-285.	13.5	305
31	Aurora kinases link chromosome segregation and cell division to cancer susceptibility. Current Opinion in Genetics and Development, 2004, 14, 29-36.	1.5	302
32	Phosphoproteome analysis of the human mitotic spindle. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5391-5396.	3.3	301
33	PICH, a Centromere-Associated SNF2 Family ATPase, Is Regulated by Plk1 andÂRequired for the Spindle Checkpoint. Cell, 2007, 128, 101-114.	13.5	297
34	Centrosome-associated Chk1 prevents premature activation of cyclin-B–Cdk1 kinase. Nature Cell Biology, 2004, 6, 884-891.	4.6	296
35	Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. Journal of Cell Biology, 2003, 162, 863-876.	2.3	293
36	Aurora-B phosphorylates Histone H3 at serine 28 with regard to the mitotic chromosome condensation. Genes To Cells, 2002, 7, 11-17.	0.5	292

#	Article	lF	CITATIONS
37	Rootletin forms centriole-associated filaments and functions in centrosome cohesion. Journal of Cell Biology, 2005, 171, 27-33.	2.3	286
38	Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO Journal, 2011, 30, 1520-1535.	3.5	278
39	A cyclin associated with the CDK-activating kinase MO15. Nature, 1994, 371, 254-257.	13.7	277
40	Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. Journal of Cell Biology, 2004, 166, 167-172.	2.3	276
41	Cdk1/Erk2- and Plk1-Dependent Phosphorylation of a Centrosome Protein, Cep55, Is Required for Its Recruitment to Midbody and Cytokinesis. Developmental Cell, 2005, 9, 477-488.	3.1	273
42	Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore–microtubule interactions. Genes and Development, 2007, 21, 2205-2219.	2.7	271
43	Molecular Basis of Tubulin Transport Within the Cilium by IFT74 and IFT81. Science, 2013, 341, 1009-1012.	6.0	271
44	Human Asf1 and CAFâ€1 interact and synergize in a repairâ€coupled nucleosome assembly pathway. EMBO Reports, 2002, 3, 329-334.	2.0	268
45	KIF14 and citron kinase act together to promote efficient cytokinesis. Journal of Cell Biology, 2006, 172, 363-372.	2.3	253
46	Cell cycle regulation of central spindle assembly. Nature, 2004, 430, 908-913.	13.7	244
47	Cellular substrates of p34cdc2 and its companion cyclin-dependent kinases. Trends in Cell Biology, 1993, 3, 296-301.	3.6	243
48	HURP Is a Ran-Importin \hat{l}^2 -Regulated Protein that Stabilizes Kinetochore Microtubules in the Vicinity of Chromosomes. Current Biology, 2006, 16, 731-742.	1.8	242
49	Targets of cyclin-dependent protein kinases. Current Opinion in Cell Biology, 1993, 5, 187-193.	2.6	238
50	Polo-like Kinase 1 Regulates Nlp, a Centrosome Protein Involved in Microtubule Nucleation. Developmental Cell, 2003, 5, 113-125.	3.1	234
51	Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cytoskeleton, 2004, 59, 249-263.	4.4	228
52	Proteome Analysis of the Human Mitotic Spindle. Molecular and Cellular Proteomics, 2005, 4, 35-43.	2.5	225
53	Choice of Plk1 docking partners during mitosis and cytokinesis is controlled by the activation state of Cdk1. Nature Cell Biology, 2007, 9, 436-444.	4.6	225
54	Nuclear export of proteins: The role of nuclear retention. Cell, 1993, 74, 493-504.	13.5	220

#	Article	IF	CITATIONS
55	Timely anaphase onset requires a novel spindle and kinetochore complex comprising Ska1 and Ska2. EMBO Journal, 2006, 25, 5504-5515.	3.5	220
56	Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO Journal, 2002, 21, 1723-1732.	3.5	219
57	Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature, 2005, 437, 1048-1052.	13.7	216
58	The Forkhead-associated Domain Protein Cep170 Interacts with Polo-like Kinase 1 and Serves as a Marker for Mature Centrioles. Molecular Biology of the Cell, 2005, 16, 1095-1107.	0.9	215
59	The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO Journal, 2003, 22, 5757-5768.	3.5	209
60	The Centrosomal Protein C-Nap1 Is Required for Cell Cycle–Regulated Centrosome Cohesion. Journal of Cell Biology, 2000, 151, 837-846.	2.3	207
61	Centrosome duplication: of rules and licenses. Trends in Cell Biology, 2007, 17, 215-221.	3.6	206
62	The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle. Molecular and Cellular Proteomics, 2011, 10, M110.004457.	2.5	201
63	A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell, 1995, 83, 137-146.	13.5	198
64	Stable kinetochore–microtubule interactions depend on the Ska complex and its new component Ska3/C13Orf3. EMBO Journal, 2009, 28, 1442-1452.	3. 5	196
65	Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. Journal of Cell Science, 2013, 126, 3223-33.	1.2	195
66	Plk4 <i>trans</i> -autophosphorylation regulates centriole number by controlling \hat{l}^2 TrCP-mediated degradation. Journal of Cell Science, 2010, 123, 2163-2169.	1.2	194
67	Origins and consequences of centrosome aberrations in human cancers. International Journal of Cancer, 2006, 119, 2717-2723.	2.3	185
68	Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion. Journal of Cell Science, 2007, 120, 4321-4331.	1.2	181
69	Use of the Novel Plk1 Inhibitor ZK-Thiazolidinone to Elucidate Functions of Plk1 in Early and Late Stages of Mitosis. Molecular Biology of the Cell, 2007, 18, 4024-4036.	0.9	178
70	Xenopus polo-like kinase Plx1 regulates XErp1, a novel inhibitor of APC/C activity. Genes and Development, 2005, 19, 502-513.	2.7	172
71	Cell-cycle-regulated expression of STIL controls centriole number in human cells. Journal of Cell Science, 2012, 125, 1342-1352.	1.2	170
72	Strong Functional Interactions of TFIIH with XPC and XPG in Human DNA Nucleotide Excision Repair, without a Preassembled Repairosome. Molecular and Cellular Biology, 2001, 21, 2281-2291.	1.1	168

#	Article	IF	CITATIONS
73	Aurora-B Regulates the Cleavage Furrow-specific Vimentin Phosphorylation in the Cytokinetic Process. Journal of Biological Chemistry, 2003, 278, 8526-8530.	1.6	168
74	Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Current Biology, 2001, 11, 1068-1073.	1.8	164
75	Complex formation of Plk1 and INCENP required for metaphase–anaphase transition. Nature Cell Biology, 2006, 8, 180-187.	4.6	159
76	Spatial Exclusivity Combined with Positive and Negative Selection of Phosphorylation Motifs Is the Basis for Context-Dependent Mitotic Signaling. Science Signaling, 2011, 4, ra42.	1.6	155
77	Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity. Journal of Cell Biology, 2007, 178, 345-354.	2.3	154
78	Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. Journal of Cell Science, 2001, 114, 3749-3757.	1.2	154
79	The PIDDosome activates p53 in response to supernumerary centrosomes. Genes and Development, 2017, 31, 34-45.	2.7	153
80	Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2841-50.	3.3	152
81	Structural and Functional Organization of the Ska Complex, a Key Component of the Kinetochore-Microtubule Interface. Molecular Cell, 2012, 46, 274-286.	4.5	149
82	Band 3-glycophorin A association in erythrocyte membranes demonstrated by combining protein diffusion measurements with antibody-induced cross-linking. Biochemistry, 1980, 19, 1887-1893.	1.2	148
83	Evaluation and Improvement of Quantification Accuracy in Isobaric Mass Tag-Based Protein Quantification Experiments. Journal of Proteome Research, 2016, 15, 2537-2547.	1.8	148
84	Assembly-disassembly of the nuclear lamina. Current Opinion in Cell Biology, 1992, 4, 105-109.	2.6	146
85	Centromere Targeting of the Chromosomal Passenger Complex Requires a Ternary Subcomplex of Borealin, Survivin, and the N-Terminal Domain of INCENP. Molecular Biology of the Cell, 2006, 17, 2547-2558.	0.9	145
86	Human Tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint. EMBO Journal, 2003, 22, 1676-1687.	3.5	143
87	Substrate Specificity and Cell Cycle Regulation of the Nek2 Protein Kinase, a Potential Human Homolog of the Mitotic Regulator NIMA of Aspergillus nidulans. Journal of Biological Chemistry, 1995, 270, 12899-12905.	1.6	140
88	A Complex of Two Centrosomal Proteins, CAP350 and FOP, Cooperates with EB1 in Microtubule Anchoring. Molecular Biology of the Cell, 2006, 17, 634-644.	0.9	140
89	Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly. Journal of Cell Biology, 2009, 185, 859-874.	2.3	140
90	Different Plk1 Functions Show Distinct Dependencies on Polo-Box Domain-mediated Targeting. Molecular Biology of the Cell, 2006, 17, 448-459.	0.9	134

#	Article	IF	Citations
91	Phosphorylation by p34cdc2 Protein Kinase Regulates Binding of the Kinesin-related Motor HsEg5 to the Dynactin Subunit p150Glued. Journal of Biological Chemistry, 1997, 272, 19418-19424.	1.6	132
92	The autoregulated instability of Polo-like kinase 4 limits centrosome duplication to once per cell cycle. Genes and Development, 2012, 26, 2684-2689.	2.7	132
93	Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control?. Current Opinion in Cell Biology, 1996, 8, 312-317.	2.6	129
94	Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis. Journal of Cell Biology, 2005, 171, 431-436.	2.3	127
95	The PLK4–STIL–SAS-6 module at the core of centriole duplication. Biochemical Society Transactions, 2016, 44, 1253-1263.	1.6	125
96	Aurora B controls kinetochore–microtubule attachments by inhibiting Ska complex–KMN network interaction. Journal of Cell Biology, 2012, 196, 563-571.	2.3	122
97	The transforming protein of Moloney murine sarcoma virus is a soluble cytoplasmic protein. Cell, 1983, 33, 161-172.	13.5	121
98	Plk1 regulates mitotic Aurora A function through \hat{l}^2 TrCP-dependent degradation of hBora. Chromosoma, 2008, 117, 457-469.	1.0	120
99	STIL Microcephaly Mutations Interfere with APC/C-Mediated Degradation and Cause Centriole Amplification. Current Biology, 2014, 24, 351-360.	1.8	118
100	Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A. Journal of Cell Biology, 2013, 202, 605-621.	2.3	117
101	Centrosomes as signalling centres. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130464.	1.8	115
102	Quantitative Analysis of the Human Spindle Phosphoproteome at Distinct Mitotic Stages. Journal of Proteome Research, 2009, 8, 4553-4563.	1.8	110
103	STIL binding to Polo-box 3 of PLK4 regulates centriole duplication. ELife, 2015, 4, .	2.8	109
104	Influence of human Ect2 depletion and overexpression on cleavage furrow formation and abscission. Journal of Cell Science, 2006, 119, 3008-3019.	1.2	108
105	The mitotic roles of Polo-like kinase. Journal of Cell Science, 2001, 114, 2357-2358.	1.2	108
106	Persistence of DNA threads in human anaphase cells suggests late completion of sister chromatid decatenation. Chromosoma, 2008, 117, 123-135.	1.0	107
107	RanBP2 and SENP3 Function in a Mitotic SUMO2/3 Conjugation-Deconjugation Cycle on Borealin. Molecular Biology of the Cell, 2009, 20, 410-418.	0.9	106
108	Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. Journal of Cell Science, 2010, 123, 84-94.	1.2	100

#	Article	IF	Citations
109	Cytostatic factor: an activity that puts the cell cycle on hold. Journal of Cell Science, 2006, 119, 1213-1218.	1.2	98
110	Centrosome-Associated NDR Kinase Regulates Centrosome Duplication. Molecular Cell, 2007, 25, 625-634.	4.5	98
111	Plk1 and Mps1 Cooperatively Regulate the Spindle Assembly Checkpoint in Human Cells. Cell Reports, 2015, 12, 66-78.	2.9	96
112	Mitogen-activated protein kinases phosphorylate nuclear lamins and display sequence specificity overlapping that of mitotic protein kinase p34cdc2. FEBS Journal, 1992, 205, 287-294.	0.2	94
113	PICH promotes sister chromatid disjunction and co-operates with topoisomerase II in mitosis. Nature Communications, 2015, 6, 8962.	5.8	94
114	The mechanism regulating the dissociation of the centrosomal protein C-Nap1 from mitotic spindle poles. Journal of Cell Science, 2002, 115, 3275-3284.	1.2	94
115	Dimeric association of band 3 in the erythrocyte membrane demonstrated by protein diffusion measurements. Nature, 1979, 277, 493-494.	13.7	91
116	Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division. Journal of Cell Science, 2010, 123, 806-813.	1.2	91
117	The CeCDC-14 phosphatase is required for cytokinesis in the Caenorhabditis elegans embryo. Journal of Cell Biology, 2002, 158, 901-914.	2.3	88
118	Acentrosomal spindle organization renders cancer cells dependent on the kinesin HSET. Journal of Cell Science, 2012, 125, 5391-402.	1.2	86
119	PICH: A DNA Translocase Specially Adapted for Processing Anaphase Bridge DNA. Molecular Cell, 2013, 51, 691-701.	4.5	86
120	Nuclear Function and Organization: The Potential of Immunochemical Approaches. International Review of Cytology, 1988, 110, 27-92.	6.2	85
121	Mechanisms of Signal Transduction to the Cell Nucleus. Advances in Cancer Research, 1990, 55, 271-310.	1.9	84
122	Phosphorylation of Nlp by Plk1 negatively regulates its dynein-dynactin-dependent targeting to the centrosome. Journal of Cell Science, 2005, 118, 5101-5108.	1.2	84
123	Structural basis for microtubule recognition by the human kinetochore Ska complex. Nature Communications, 2014, 5, 2964.	5.8	84
124	Dynamic Changes in Nuclear Architecture during Mitosis: On the Role of Protein Phosphorylation in Spindle Assembly and Chromosome Segregation. Experimental Cell Research, 1996, 229, 174-180.	1.2	83
125	Coordinate Regulation of the Mother Centriole Component Nlp by Nek2 and Plk1 Protein Kinases. Molecular and Cellular Biology, 2005, 25, 1309-1324.	1.1	83
126	Activity of the Human Centrosomal Kinase, Nek2, Depends on an Unusual Leucine Zipper Dimerization Motif. Journal of Biological Chemistry, 1999, 274, 16304-16310.	1.6	79

#	Article	IF	CITATIONS
127	Inhibition of Centrosome Separation after DNA Damage: A Role for Nek2. Radiation Research, 2004, 162, 128-135.	0.7	79
128	Suppression of Tousled-like kinase activity after DNA damage or replication block requires ATM, NBS1 and Chk1. Oncogene, 2003, 22, 5927-5937.	2.6	77
129	Tousled-like kinase functions with the chromatin assembly pathway regulating nuclear divisions. Genes and Development, 2003, 17, 2578-2590.	2.7	77
130	Cell-cycle control: POLO-like kinases join the outer circle. Trends in Cell Biology, 1997, 7, 63-68.	3.6	76
131	Characterization of Polo-like Kinase 1 during Meiotic Maturation of the Mouse Oocyte. Developmental Biology, 2000, 220, 392-400.	0.9	76
132	Sgt1 is required for human kinetochore assembly. EMBO Reports, 2004, 5, 626-631.	2.0	76
133	Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging. EMBO Journal, 2016, 35, 2152-2166.	3.5	76
134	The mechanism regulating the dissociation of the centrosomal protein C-Nap1 from mitotic spindle poles. Journal of Cell Science, 2002, 115, 3275-84.	1.2	76
135	Cell Cycle-regulated Phosphorylation of the XenopusPolo-like Kinase Plx1. Journal of Biological Chemistry, 2002, 277, 25247-25256.	1.6	74
136	Kinetochore localization and microtubule interaction of the human spindle checkpoint kinase Mps1. Chromosoma, 2004, 113, 1-15.	1.0	74
137	Probing thein vivofunction of Mad1:C-Mad2 in the spindle assembly checkpoint. EMBO Journal, 2011, 30, 3322-3336.	3.5	73
138	The centrosome duplication cycle in health and disease. FEBS Letters, 2014, 588, 2366-2372.	1.3	73
139	Evaluation of the Low-Specificity Protease Elastase for Large-Scale Phosphoproteome Analysis. Analytical Chemistry, 2008, 80, 9526-9533.	3.2	71
140	Protein kinases in control of the centrosome cycle. FEBS Letters, 1999, 452, 92-95.	1.3	70
141	Quantitative Mass Spectrometry Analysis Reveals Similar Substrate Consensus Motif for Human Mps1 Kinase and Plk1. PLoS ONE, 2011, 6, e18793.	1.1	65
142	Depletion of licensing inhibitor geminin causes centrosome overduplication and mitotic defects. EMBO Reports, 2005, 6, 1052-1057.	2.0	63
143	Re-examination of siRNA specificity questions role of PICH and Tao1 in the spindle checkpoint and identifies Mad2 as a sensitive target for small RNAs. Chromosoma, 2010, 119, 149-165.	1.0	60
144	The Transforming Parasite Theileria Co-opts Host Cell Mitotic and Central Spindles to Persist in Continuously Dividing Cells. PLoS Biology, 2010, 8, e1000499.	2.6	60

#	Article	IF	Citations
145	Regulation of Aurora-A kinase on the mitotic spindle. Chromosoma, 2003, 112, 159-163.	1.0	55
146	From proteome lists to biological impact– tools and strategies for the analysis of large MS data sets. Proteomics, 2010, 10, 1270-1283.	1.3	54
147	Probing the catalytic functions of Bub1 kinase using the small molecule inhibitors BAY-320 and BAY-524. ELife, $2016, 5, .$	2.8	53
148	PI 3-kinase-dependent phosphorylation of Plk1–Ser99 promotes association with 14-3-3γ and is required for metaphase–anaphase transition. Nature Communications, 2013, 4, 1882.	5 . 8	51
149	The E3 ubiquitin ligase Mib1 regulates Plk4 and centriole biogenesis. Journal of Cell Science, 2015, 128, 1674-82.	1.2	50
150	Cell Cycle: The NIMA kinase joins forces with Cdc2. Current Biology, 1995, 5, 1122-1125.	1.8	49
151	The Spindle Protein CHICA Mediates Localization of the Chromokinesin Kid to the Mitotic Spindle. Current Biology, 2008, 18, 723-729.	1.8	48
152	Comparative conservation analysis of the human mitotic phosphoproteome. Bioinformatics, 2008, 24, 1426-1432.	1.8	48
153	SUMO-dependent regulation of centrin-2. Journal of Cell Science, 2009, 122, 3312-3321.	1.2	47
154	Identification of phosphorylation sites in the polo-like kinases Plx1 and Plk1 by a novel strategy based on element and electrospray high resolution mass spectrometry. Proteomics, 2002, 2, 1516-1523.	1.3	46
155	Quantitative Site-specific Phosphorylation Dynamics of Human Protein Kinases during Mitotic Progression. Molecular and Cellular Proteomics, 2010, 9, 1167-1181.	2.5	46
156	Evaluation of Data-Dependent and -Independent Mass Spectrometric Workflows for Sensitive Quantification of Proteins and Phosphorylation Sites. Journal of Proteome Research, 2014, 13, 5973-5988.	1.8	44
157	Structural centrosome aberrations promote nonâ€cellâ€autonomous invasiveness. EMBO Journal, 2018, 37, .	3.5	43
158	Quantitative proteomic and phosphoproteomic comparison of human colon cancer DLD-1 cells differing in ploidy and chromosome stability. Molecular Biology of the Cell, 2018, 29, 1031-1047.	0.9	41
159	Thein VivoExpression Pattern of Mouse Nek2, a NIMA-Related Kinase, Indicates a Role in both Mitosis and Meiosis. Experimental Cell Research, 1997, 237, 264-274.	1.2	40
160	Cloning and Characterization of the Murine Nek3 Protein Kinase, a Novel Member of the NIMA Family of Putative Cell Cycle Regulators. Journal of Biological Chemistry, 1999, 274, 13491-13497.	1.6	37
161	The Ska complex promotes Aurora B activity to ensure chromosome biorientation. Journal of Cell Biology, 2016, 215, 77-93.	2.3	37
162	Characterization of mammalian NIMA-related kinases. Methods in Enzymology, 1997, 283, 270-282.	0.4	36

#	Article	IF	CITATIONS
163	Structure of the N-terminal Domain of the FOP (FGFR1OP) Protein and Implications for its Dimerization and Centrosomal Localization. Journal of Molecular Biology, 2006, 359, 863-875.	2.0	36
164	M-phase MELK activity is regulated by MPF and MAPK. Cell Cycle, 2006, 5, 883-889.	1.3	36
165	Ska3 Ensures Timely Mitotic Progression by Interacting Directly With Microtubules and Ska1 Microtubule Binding Domain. Scientific Reports, 2016, 6, 34042.	1.6	36
166	On the regulation, function, and localization of the DNA-dependent ATPase PICH. Chromosoma, 2012, 121, 395-408.	1.0	35
167	C-Nap1 mutation affects centriole cohesion and is associated with a Seckel-like syndrome in cattle. Nature Communications, 2015, 6, 6894.	5.8	34
168	The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts. Chromosoma, 2007, 116, 487-496.	1.0	32
169	Bub1 autophosphorylation feeds back to regulate kinetochore docking and promote localized substrate phosphorylation. Nature Communications, 2015, 6, 8364.	5.8	30
170	Regulating centrosomes by protein phosphorylation. Current Topics in Developmental Biology, 1999, 49, 291-312.	1.0	29
171	Cloning and Characterization of Plx2 and Plx3, Two Additional Polo-like Kinases from Xenopus laevis. Experimental Cell Research, 2001, 270, 78-87.	1.2	29
172	Direct Regulation of tRNA and 5S rRNA Gene Transcription by Polo-like Kinase 1. Molecular Cell, 2012, 45, 541-552.	4.5	26
173	A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. Journal of Cell Biology, 2015, 211, 913-931.	2.3	26
174	Structure and developmental expression of chicken nucleolin and NO38: Coordinate expression of two abundant non-ribosomal nucleolar proteins. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1049, 126-133.	2.4	23
175	Impact of Centrosome Aberrations on Chromosome Segregation and Tissue Architecture in Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2017, 82, 137-144.	2.0	22
176	Rigor-type mutation in the kinesin-related protein HsEg5 changes its subcellular localization and induces microtubule bundling., 1998, 40, 174-182.		21
177	The Centrosome in Evolution. , 2005, , 93-122.		20
178	The SKP1-Cullin-F-box E3 ligase \hat{I}^2 TrCP and CDK2 cooperate to control STIL abundance and centriole number. Open Biology, 2018, 8, .	1.5	20
179	A monoclonal antibody specific for snRNPs U1 and U2. FEBS Letters, 1986, 201, 25-30.	1.3	19
180	Purification of mitotic spindles from cultured human cells. Methods, 2006, 38, 25-28.	1.9	19

#	Article	IF	Citations
181	Rotational diffusion of band 3 proteins in membranes from En(aâ€") and neuraminidase-treated normal human erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 1980, 600, 636-642.	1.4	14
182	Mechanisms of cAMP-mediated gene induction: Examination of renal epithelial cell mutants affected in the catalytic subunit of the cAMP-dependent protein kinase. Experimental Cell Research, 1991, 192, 315-318.	1,2	14
183	Regulation of cell division: stop the SIN!. Trends in Cell Biology, 2003, 13, 159-162.	3.6	14
184	SIGNAL TRANSDUCTION: Capturing Polo Kinase. Science, 2003, 299, 1190-1191.	6.0	14
185	Uncovering the Molecular Machinery of the Human Spindleâ€"An Integration of Wet and Dry Systems Biology. PLoS ONE, 2012, 7, e31813.	1.1	14
186	Structural centrosome aberrations sensitize polarized epithelia to basal cell extrusion. Open Biology, $2018,8,.$	1.5	14
187	Geminin Regulates Multiple Steps of the Chromosome Inheritance Cycle. Cell Cycle, 2006, 5, 151-154.	1.3	13
188	Centrosome Duplication and its Regulation in the Higher Animal Cell. , 2005, , 167-189.		12
189	A novel TPR–BEN domain interaction mediates PICH–BEND3 association. Nucleic Acids Research, 2017, 45, 11413-11424.	6.5	12
190	Oncogenes and cell proliferation Cancer genes: lessons from genetics and biochemistry. Current Opinion in Genetics and Development, 1998, 8, 11-13.	1.5	9
191	A licence for duplication. Nature, 2006, 442, 874-875.	13.7	9
192	Polo-like kinases. Current Biology, 2013, 23, R225-R227.	1.8	8
193	The Role of the Centrosome in Cell Cycle Progression. , 2005, , 143-166.		7
194	Assessment of current mass spectrometric workflows for the quantification of low abundant proteins and phosphorylation sites. Data in Brief, 2015, 5, 297-304.	0.5	7
195	Cellular Prion Protein PrPC and Ecto-5′-Nucleotidase Are Markers of the Cellular Stress Response to Aneuploidy. Cancer Research, 2017, 77, 2914-2926.	0.4	7
196	Signal Transduction to the Cell Nucleus. Advances in Molecular and Cell Biology, 1992, 4, 103-131.	0.1	6
197	Microtubule Organizing Centers in Polarized Epithelial Cells. , 2005, , 299-319.		6
198	Microtubule Nucleation. , 2005, , 27-41.		4

#	Article	IF	Citations
199	The Tubulin Superfamily., 2005, , 17-25.		3
200	Early Studies on Centrioles and Centrosomes. , 2005, , 1-15.		3
201	Centrosomes in a Developing Organism: Lessons from Drosophila. , 2005, , 251-278.		2
202	Basal Bodies and Microtubule Organization in Pathogenic Protozoa., 2005,, 401-423.		2
203	New Editor-in-Chief—welcome to Simon Boulton!. Chromosoma, 2018, 127, 1-1.	1.0	2
204	Control of Nuclear Lamina Assembly/Disassembly by Phosphorylation. Advances in Molecular and Cell Biology, 1995, 13, 165-179.	0.1	1
205	Centrosome Anomalies in Cancer: From Early Observations to Animal Models. , 2005, , 321-336.		1
206	The Budding Yeast Spindle Pole Body: A Centrosome Analog. , 2005, , 43-69.		1
207	A Synergy of Technologies: Using Green Fluorescent Protein Tagging and Laser Microsurgery to Study Centrosome Function and Duplication in Vertebrates. , 2005, , 191-210.		1
208	Dissection of Basal Body and Centriole Function in the Unicellular Green Alga Chlamydomonas reinhardtii., 2005,, 71-92.		1
209	Centrosome Regulation in Response to Environmental and Genotoxic Stress., 2005,, 211-223.		1
210	Introduction: Cell cycle control in early development. Seminars in Developmental Biology, 1994, 5, 131-132.	1.3	0
211	Chapter 10 Signal transduction to the cell nucleus. Principles of Medical Biology, 1996, 5, 201-228.	0.1	0
212	Chromosoma ? Exploring new horizons. Chromosoma, 2003, 112, 57-57.	1.0	0
213	The C. elegans Centrosome during Early Embryonic Development. , 2005, , 225-250.		O
214	Centrosome Inheritance during Human Fertilization and "Therapeutic―Cloning: Reproductive and Developmental Diseases and Disorders Caused by Centrosome Dysfunction. , 2005, , 279-298.		0
215	Manipulation of Centrosomes and the Microtubule Cytoskeleton during Infection by Intracellular Pathogens., 2005,, 371-400.		0
216	Human Papillomavirus Infection and Centrosome Anomalies in Cervical Cancer., 2005,, 353-370.		0

#	Article	IF	CITATIONS
217	Radiation Therapy and Centrosome Anomalies in Pancreatic Cancer. , 2005, , 337-352.		0
218	Editorial Note on Carlberg and Seuter (2010) Dynamics of nuclear receptor target gene regulation, Chromosoma (2010) 119: 479–484. Chromosoma, 2011, 120, 531-531.	1.0	0
219	Seventy-fiveÂyears of Chromosoma: Ivory Towers, citation metrics, and longevity of research. Chromosoma, 2014, 123, 1-2.	1.0	O
220	In memoriam—Walter J. Gehring. Chromosoma, 2015, 124, 291-291.	1.0	0
221	21st International Chromosome Conference—Foz do Iguaçu, Brazil. Chromosoma, 2016, 125, 353-353.	1.0	0