Oliver C Grant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9496285/publications.pdf

Version: 2024-02-01

28 1,807 papers citations

21 28 h-index g-index

34 34 docs citations

34 times ranked 3489 citing authors

#	Article	IF	CITATIONS
1	Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host and Microbe, 2020, 28, 586-601.e6.	11.0	334
2	Analysis of the SARS-CoV-2 spike protein glycan shield reveals implications for immune recognition. Scientific Reports, 2020, 10, 14991.	3.3	286
3	Recent H3N2 Viruses Have Evolved Specificity for Extended, Branched Human-type Receptors, Conferring Potential for Increased Avidity. Cell Host and Microbe, 2017, 21, 23-34.	11.0	163
4	Integrated Omics and Computational Glycobiology Reveal Structural Basis for Influenza A Virus Glycan Microheterogeneity and Host Interactions. Molecular and Cellular Proteomics, 2016, 15, 1895-1912.	3.8	85
5	Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathogens, 2017, 13, e1006390.	4.7	83
6	Presentation, presentation, presentation! Molecular-level insight into linker effects on glycan array screening data. Glycobiology, 2014, 24, 17-25.	2.5	80
7	Galectin binding to cells and glycoproteins with genetically modified glycosylation reveals galectin–glycan specificities in a natural context. Journal of Biological Chemistry, 2018, 293, 20249-20262.	3.4	67
8	Analysis of site-specific $\langle i \rangle N \langle i \rangle$ -glycan remodeling in the endoplasmic reticulum and the Golgi. Glycobiology, 2015, 25, 1335-1349.	2. 5	60
9	Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Acı̂±2-6Galı̂²1-4GlcNAc human-type influenza receptor. Glycobiology, 2011, 21, 973-984.	2.5	53
10	Combining 3D structure with glycan array data provides insight into the origin of glycan specificity. Glycobiology, 2016, 26, 772-783.	2.5	39
11	The Tetrameric Plant Lectin BanLec Neutralizes HIV through Bidentate Binding to Specific Viral Glycans. Structure, 2017, 25, 773-782.e5.	3.3	39
12	Fluorescent Trimeric Hemagglutinins Reveal Multivalent Receptor Binding Properties. Journal of Molecular Biology, 2019, 431, 842-856.	4.2	36
13	O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. Glycobiology, 2020, 30, 74-85.	2.5	36
14	The Influence of N-Linked Glycans on the Molecular Dynamics of the HIV-1 gp120 V3 Loop. PLoS ONE, 2013, 8, e80301.	2.5	35
15	New insights into influenza A specificity: an evolution of paradigms. Current Opinion in Structural Biology, 2017, 44, 219-231.	5.7	34
16	Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. Journal of Biological Chemistry, 2021, 296, 100144.	3.4	31
17	Landscape and selection of vaccine epitopes in SARS-CoV-2. Genome Medicine, 2021, 13, 101.	8.2	30
18	Computational Screening of the Human TF-Glycome Provides a Structural Definition for the Specificity of Anti-Tumor Antibody JAA-F11. PLoS ONE, 2013, 8, e54874.	2.5	29

#	Article	lF	CITATION
19	PD-L1 Glycosylation and Its Impact on Binding to Clinical Antibodies. Journal of Proteome Research, 2021, 20, 485-497.	3.7	29
20	Recent advances in employing molecular modelling to determine the specificity of glycan-binding proteins. Current Opinion in Structural Biology, 2014, 28, 47-55.	5.7	28
21	Asn347 Glycosylation of Corticosteroid-binding Globulin Fine-tunes the Host Immune Response by Modulating Proteolysis by Pseudomonas aeruginosa and Neutrophil Elastase. Journal of Biological Chemistry, 2016, 291, 17727-17742.	3.4	27
22	Enhanced Human-Type Receptor Binding by Ferret-Transmissible H5N1 with a K193T Mutation. Journal of Virology, 2018, 92, .	3.4	23
23	Rapidly Display Glycan Symbols in 3D Structures: 3D-SNFG in LiteMol. Journal of Proteome Research, 2019, 18, 770-774.	3.7	20
24	Hierarchical Multivalent Effects Control Influenza Host Specificity. ACS Central Science, 2020, 6, 2311-2318.	11.3	20
25	Allosteric regulation of lysosomal enzyme recognition by the cation-independent mannose 6-phosphate receptor. Communications Biology, 2020, 3, 498.	4.4	20
26	Gly-Spec: a webtool for predicting glycan specificity by integrating glycan array screening data and 3D structure. Glycobiology, 2016, 26, 1027-1028.	2.5	19
27	A combined computational-experimental approach to define the structural origin of antibody recognition of sialyl-Tn, a tumor-associated carbohydrate antigen. Scientific Reports, 2018, 8, 10786.	3.3	15
28	Induction of Antibodies Directed Against Branched Core <i>O</i> â€Mannosyl Glycopeptidesâ€"Selectivity Complimentary to the ConA Lectin. Chemistry - A European Journal, 2017, 23, 3466-3473.	3.3	12