
## Fa-Xing Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9496010/publications.pdf Version: 2024-02-01



EA-YING VI

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell, 2015, 163, 811-828.                                                                                                       | 28.9 | 1,716     |
| 2  | Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling. Cell, 2012, 150, 780-791.                                                                                               | 28.9 | 1,310     |
| 3  | The Hippo pathway: regulators and regulations. Genes and Development, 2013, 27, 355-371.                                                                                                             | 5.9  | 1,034     |
| 4  | Differential regulation of mTORC1 by leucine and glutamine. Science, 2015, 347, 194-198.                                                                                                             | 12.6 | 585       |
| 5  | A gp130–Src–YAP module links inflammation to epithelial regeneration. Nature, 2015, 519, 57-62.                                                                                                      | 27.8 | 528       |
| 6  | Alternative Wnt Signaling Activates YAP/TAZ. Cell, 2015, 162, 780-794.                                                                                                                               | 28.9 | 528       |
| 7  | Mutant Gq/11 Promote Uveal Melanoma Tumorigenesis by Activating YAP. Cancer Cell, 2014, 25, 822-830.                                                                                                 | 16.8 | 391       |
| 8  | MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nature Communications, 2015, 6, 8357.                                                                       | 12.8 | 388       |
| 9  | A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes and Development, 2015, 29, 1271-1284.                                                                                | 5.9  | 278       |
| 10 | Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes and Development, 2013, 27, 1223-1232.                                                         | 5.9  | 269       |
| 11 | RAP2 mediates mechanoresponses of the Hippo pathway. Nature, 2018, 560, 655-660.                                                                                                                     | 27.8 | 266       |
| 12 | Regulation of the Hippo–YAP pathway by protease-activated receptors (PARs). Genes and Development, 2012, 26, 2138-2143.                                                                              | 5.9  | 239       |
| 13 | Estrogen regulates Hippo signaling via GPER in breast cancer. Journal of Clinical Investigation, 2015, 125, 2123-2135.                                                                               | 8.2  | 179       |
| 14 | Claudin-18–mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis. Journal of Clinical Investigation, 2018, 128, 970-984.                                       | 8.2  | 115       |
| 15 | The Hippo pathway in tissue homeostasis and regeneration. Protein and Cell, 2017, 8, 349-359.                                                                                                        | 11.0 | 110       |
| 16 | Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biology, 2019, 17, e3000201.                                                                                            | 5.6  | 104       |
| 17 | Hippo Pathway Regulation of Gastrointestinal Tissues. Annual Review of Physiology, 2015, 77, 201-227.                                                                                                | 13.1 | 103       |
| 18 | Small Molecule Inhibitors of TEAD Auto-palmitoylation Selectively Inhibit Proliferation and Tumor<br>Growth of <i>NF2</i> -deficient Mesothelioma. Molecular Cancer Therapeutics, 2021, 20, 986-998. | 4.1  | 101       |

Fa-Xing Yu

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein. Cellular Signalling, 2016, 28, 377-383.         | 3.6  | 83        |
| 20 | Histone 2B (H2B) Expression Is Confined to a Proper NAD+/NADH Redox Status. Journal of Biological<br>Chemistry, 2008, 283, 26894-26901.                                                            | 3.4  | 79        |
| 21 | GPCR-Hippo Signaling in Cancer. Cells, 2019, 8, 426.                                                                                                                                               | 4.1  | 66        |
| 22 | Kaposi sarcoma-associated herpesvirus promotes tumorigenesis by modulating the Hippo pathway.<br>Oncogene, 2015, 34, 3536-3546.                                                                    | 5.9  | 64        |
| 23 | Thioredoxin-interacting Protein (Txnip) Gene Expression. Journal of Biological Chemistry, 2010, 285, 25822-25830.                                                                                  | 3.4  | 62        |
| 24 | GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. ELife, 2019, 8, .                                                                                                                | 6.0  | 60        |
| 25 | Opposing roles of conventional and novel PKC isoforms in Hippo-YAP pathway regulation. Cell<br>Research, 2015, 25, 985-988.                                                                        | 12.0 | 54        |
| 26 | Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. Journal of Hepatology, 2022, 77, 453-466.                                                    | 3.7  | 50        |
| 27 | STAT3-YAP/TAZ signaling in endothelial cells promotes tumor angiogenesis. Science Signaling, 2021, 14, eabj8393.                                                                                   | 3.6  | 50        |
| 28 | A potential mechanism of metformin-mediated regulation of glucose homeostasis: Inhibition of<br>Thioredoxin-interacting protein (Txnip) gene expression. Cellular Signalling, 2012, 24, 1700-1705. | 3.6  | 42        |
| 29 | Adenosine-Containing Molecules Amplify Glucose Signaling and Enhance Txnip Expression. Molecular Endocrinology, 2009, 23, 932-942.                                                                 | 3.7  | 40        |
| 30 | NLK phosphorylates Raptor to mediate stress-induced mTORC1 inhibition. Genes and Development, 2015, 29, 2362-2376.                                                                                 | 5.9  | 37        |
| 31 | Tandem ChoRE and CCAAT Motifs and Associated Factors Regulate Txnip Expression in Response to Glucose or Adenosine-Containing Molecules. PLoS ONE, 2009, 4, e8397.                                 | 2.5  | 36        |
| 32 | WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a tumor suppression strategy.<br>Molecular Cell, 2022, 82, 1850-1864.e7.                                                        | 9.7  | 35        |
| 33 | Elite control of HIV: p21 (waf-1/cip-1) at its best. Cell Cycle, 2012, 11, 4097-4098.                                                                                                              | 2.6  | 32        |
| 34 | USP47-mediated deubiquitination and stabilization of YAP contributes to the progression of colorectal cancer. Protein and Cell, 2020, 11, 138-143.                                                 | 11.0 | 31        |
| 35 | Logic of a mammalian metabolic cycle: An oscillated NAD+/NADH redox signaling regulates coordinated histone expression and S-phase progression. Cell Cycle, 2009, 8, 773-779.                      | 2.6  | 27        |
| 36 | Site-Directed Mutagenesis Improves the Transduction Efficiency of Capsid Library-Derived Recombinant<br>AAV Vectors. Molecular Therapy - Methods and Clinical Development, 2020, 17, 545-555.      | 4.1  | 21        |

Fa-Xing Yu

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Hypoxia-inducible factor independent down-regulation of thioredoxin-interacting protein in hypoxia.<br>FEBS Letters, 2011, 585, 492-498.                                                            | 2.8  | 20        |
| 38 | CBP/p300 and SIRT1 Are Involved in Transcriptional Regulation of S-Phase Specific Histone Genes. PLoS ONE, 2011, 6, e22088.                                                                         | 2.5  | 20        |
| 39 | YAP inhibition blocks uveal melanogenesis driven by GNAQ or GNA11 mutations. Molecular and Cellular Oncology, 2015, 2, e970957.                                                                     | 0.7  | 18        |
| 40 | Targeting the Hippo Pathway for Anti-cancer Therapies. Current Medicinal Chemistry, 2015, 22, 4104-4117.                                                                                            | 2.4  | 18        |
| 41 | Nelfinavir inhibits human DDI2 and potentiates cytotoxicity of proteasome inhibitors. Cellular<br>Signalling, 2020, 75, 109775.                                                                     | 3.6  | 17        |
| 42 | Stabilization of Motin family proteins in NF2-deficient cells prevents full activation of YAP/TAZ and rapid tumorigenesis. Cell Reports, 2021, 36, 109596.                                          | 6.4  | 15        |
| 43 | An alternatively transcribed <i> <scp>TAZ</scp> </i> variant negatively regulates <scp>JAK</scp> ―<br><scp>STAT</scp> signaling. EMBO Reports, 2019, 20, .                                          | 4.5  | 14        |
| 44 | YAP as oncotarget in uveal melanoma. Oncoscience, 2014, 1, 480-481.                                                                                                                                 | 2.2  | 14        |
| 45 | Site-Selective Phosphoglycerate Mutase 1 Acetylation by a Small Molecule. ACS Chemical Biology, 2020, 15, 632-639.                                                                                  | 3.4  | 11        |
| 46 | Frequent RNF43 mutation contributes to moderate activation of Wnt signaling in colorectal signet-ring cell carcinoma. Protein and Cell, 2020, 11, 292-298.                                          | 11.0 | 11        |
| 47 | Transcription and processing: multilayer controls of RNA biogenesis by the Hippo pathway. EMBO<br>Journal, 2014, 33, 942-944.                                                                       | 7.8  | 9         |
| 48 | Hypermethylation of LATS2 Promoter and Its Prognostic Value in IDH-Mutated Low-Grade Gliomas.<br>Frontiers in Cell and Developmental Biology, 2020, 8, 586581.                                      | 3.7  | 5         |
| 49 | Staurosporine targets the Hippo pathway to inhibit cell growth. Journal of Molecular Cell Biology, 2018, 10, 267-269.                                                                               | 3.3  | 3         |
| 50 | YAP Activation and Implications in Patients and a Mouse Model of Biliary Atresia. Frontiers in Pediatrics, 2020, 8, 618226.                                                                         | 1.9  | 3         |
| 51 | Regulation of YAP and TAZ Transcription Co-activators. , 2013, , 71-87.                                                                                                                             |      | 2         |
| 52 | Regulation of TP73 transcription by Hippo-YAP signaling. Biochemical and Biophysical Research Communications, 2020, 531, 96-104.                                                                    | 2.1  | 2         |
| 53 | Functions and regulations of the Hippo signaling pathway in intestinal homeostasis, regeneration and<br>tumorigenesis. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2017, 39, 588-596. | 0.2  | 2         |
| 54 | Novel NPR2 Gene Mutations Affect Chondrocytes Function via ER Stress in Short Stature. Cells, 2022, 11, 1265.                                                                                       | 4.1  | 1         |