Aswani Yella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9495868/publications.pdf Version: 2024-02-01

ASMANI VELLA

#	Article	lF	CITATIONS
1	Dye-sensitized solar cells using cobalt electrolytes: the influence of porosity and pore size to achieve high-efficiency. Journal of Materials Chemistry C, 2017, 5, 2833-2843.	5.5	52
2	TiO 2 colloid-based compact layers for hybrid lead halide perovskite solar cells. Applied Materials Today, 2017, 7, 112-119.	4.3	24
3	Organic Dyes Containing Coplanar Dihexyl-Substituted Dithienosilole Groups for Efficient Dye-Sensitised Solar Cells. International Journal of Photoenergy, 2017, 2017, 1-14.	2.5	8
4	Unraveling the Dual Character of Sulfur Atoms on Sensitizers in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 26827-26833.	8.0	16
5	Molecular Design Principles for Nearâ€Infrared Absorbing and Emitting Indolizine Dyes. Chemistry - A European Journal, 2016, 22, 15536-15542.	3.3	39
6	Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2016, 55, 7388-7395.	4.0	21
7	A low recombination rate indolizine sensitizer for dye-sensitized solar cells. Chemical Communications, 2016, 52, 8424-8427.	4.1	45
8	Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes. Inorganic Chemistry, 2016, 55, 6653-6659.	4.0	80
9	Thieno[3,4- <i>b</i>]pyrazine as an Electron Deficient Ï€-Bridge in D–Aâ~'π– <i>A</i> DSCs. ACS Applied Materials & Interfaces, 2016, 8, 5376-5384.	8.0	57
10	Electron Kinetics in Dye Sensitized Solar Cells Employing Anatase with (101) and (001) Facets. Electrochimica Acta, 2015, 160, 296-305.	5.2	13
11	Unravel the Impact of Anchoring Groups on the Photovoltaic Performances of Diketopyrrolopyrrole Sensitizers for Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2015, 3, 2389-2396.	6.7	65
12	Peripherally and Axially Carboxylic Acid Substituted Subphthalocyanines for Dye ensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 2016-2021.	3.3	23
13	Molecular Engineering of Push–Pull Porphyrin Dyes for Highly Efficient Dye‣ensitized Solar Cells: The Role of Benzene Spacers. Angewandte Chemie - International Edition, 2014, 53, 2973-2977.	13.8	458
14	Quantum-Confined ZnO Nanoshell Photoanodes for Mesoscopic Solar Cells. Nano Letters, 2014, 14, 1190-1195.	9.1	42
15	Subâ€Nanometer Conformal TiO ₂ Blocking Layer for High Efficiency Solidâ€State Perovskite Absorber Solar Cells. Advanced Materials, 2014, 26, 4309-4312.	21.0	148
16	Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano Letters, 2014, 14, 2591-2596.	9.1	397
17	Near-IR Photoresponse of Ruthenium Dipyrrinate Terpyridine Sensitizers in the Dye-Sensitized Solar Cells. Inorganic Chemistry, 2014, 53, 5417-5419.	4.0	37
18	Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry, 2014, 6, 242-247.	13.6	3,982

ASWANI YELLA

#	Article	IF	CITATIONS
19	Acetylene-bridged dyes with high open circuit potential for dye-sensitized solar cells. RSC Advances, 2014, 4, 35251.	3.6	23
20	Highâ€Surfaceâ€Area Porous Platinum Electrodes for Enhanced Charge Transfer. Advanced Energy Materials, 2014, 4, 1400510.	19.5	26
21	New sensitizers for dye-sensitized solar cells featuring a carbon-bridged phenylenevinylene. Chemical Communications, 2013, 49, 582-584.	4.1	49
22	Graphene-type sheets of Nb1â^'xWxS2: synthesis and in situ functionalization. Dalton Transactions, 2013, 42, 5292.	3.3	5
23	Thiocyanateâ€Free Ru(II) Sensitizers with a 4,4′â€Dicarboxyvinylâ€2,2′â€bipyridine Anchor for Dye‧ensit Solar Cells. Advanced Functional Materials, 2013, 23, 2285-2294.	ized 14.9	27
24	Sterically demanded unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Dyes and Pigments, 2013, 98, 518-529.	3.7	40
25	Low-Temperature Crystalline Titanium Dioxide by Atomic Layer Deposition for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 3487-3493.	8.0	70
26	Molecular Engineering of a Fluorene Donor for Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2733-2739.	6.7	154
27	Unravelling the Potential for Dithienopyrrole Sensitizers in Dye-Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 2642-2648.	6.7	49
28	Towards Compatibility between Ruthenium Sensitizers and Cobalt Electrolytes in Dye‣ensitized Solar Cells. Angewandte Chemie - International Edition, 2013, 52, 8731-8735.	13.8	61
29	The Molecular Engineering of Organic Sensitizers for Solar ell Applications. Angewandte Chemie - International Edition, 2013, 52, 376-380.	13.8	145
30	Modulating dye E(S+/S*) with efficient heterocyclic nitrogen containing acceptors for DSCs. Chemical Communications, 2012, 48, 2295.	4.1	35
31	From Single Molecules to Nanoscopically Structured Materials: Self-Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on the Degree of Pearson Hardness. Chemistry of Materials, 2011, 23, 3534-3539.	6.7	20
32	Diffusion-Driven Formation of MoS ₂ Nanotube Bundles Containing MoS ₂ Nanopods. Chemistry of Materials, 2011, 23, 4716-4720.	6.7	18
33	Soluble IF-ReS ₂ Nanoparticles by Surface Functionalization with Terpyridine Ligands. Langmuir, 2011, 27, 385-391.	3.5	13
34	Design and Development of Functionalized Cyclometalated Ruthenium Chromophores for Light-Harvesting Applications. Inorganic Chemistry, 2011, 50, 5494-5508.	4.0	180
35	Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 2011, 334, 629-634.	12.6	5,637
36	lFâ€ReS ₂ with Covalently Linked Porphyrin Antennae. Israel Journal of Chemistry, 2010, 50, 500-505.	2.3	13

ASWANI YELLA

#	Article	IF	CITATIONS
37	Reversible Selbstorganisation von Metallchalkogenidâ€Metalloxid―Nanostrukturen basierend auf dem Pearsonâ€Konzept. Angewandte Chemie, 2010, 122, 7741-7745.	2.0	13
38	Snapshots of the Formation of Inorganic MoS ₂ Onionâ€Type Fullerenes: A "Shrinking Giant Bubble†Pathway. Angewandte Chemie - International Edition, 2010, 49, 2575-2580.	13.8	13
39	Mismatch Strain versus Dangling Bonds: Formation of "Coinâ€Roll Nanowires―by Stacking Nanosheets. Angewandte Chemie - International Edition, 2010, 49, 3301-3305.	13.8	14
40	Reversible Selfâ€Assembly of Metal Chalcogenide/Metal Oxide Nanostructures Based on Pearson Hardness. Angewandte Chemie - International Edition, 2010, 49, 7578-7582.	13.8	27
41	Synthesis and functionalization of chalcogenide nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2338-2363.	1.5	25
42	Enzymeâ€Mediated Deposition of a TiO ₂ Coating onto Biofunctionalized WS2 Chalcogenide Nanotubes. Advanced Functional Materials, 2009, 19, 285-291.	14.9	52
43	Bismuth atalyzed Growth of SnS ₂ Nanotubes and Their Stability. Angewandte Chemie - International Edition, 2009, 48, 6426-6430.	13.8	70
44	Synthesis of Hierarchically Grown ZnO@NT-WS ₂ Nanocomposites. Chemistry of Materials, 2009, 21, 5382-5387.	6.7	16
45	Synthesis of Fullerene- and Nanotube-Like SnS ₂ Nanoparticles and Sn/S/Carbon Nanocomposites. Chemistry of Materials, 2009, 21, 2474-2481.	6.7	39
46	Large Scale MOCVD Synthesis of Hollow ReS2 Nanoparticles with Nested Fullerene-Like Structure. Chemistry of Materials, 2008, 20, 3587-3593.	6.7	26
47	In Situ Heating TEM Study of Onion-like WS ₂ and MoS ₂ Nanostructures Obtained via MOCVD. Chemistry of Materials, 2008, 20, 65-71.	6.7	52