
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9495115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. Journal of Clinical Investigation, 2006, 116, 1642-1650.	8.2	632
2	Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Molecular Microbiology, 2005, 56, 397-415.	2.5	414
3	NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO Journal, 2001, 20, 4742-4752.	7.8	394
4	Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cellular Microbiology, 2006, 8, 961-971.	2.1	322
5	Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cellular Microbiology, 2012, 14, 1319-1335.	2.1	274
6	Ectopic Expression of URA3 Can Influence the Virulence Phenotypes and Proteome of Candida albicans but Can Be Overcome by Targeted Reintegration of URA3 at the RPS10 Locus. Eukaryotic Cell, 2004, 3, 900-909.	3.4	254
7	Glycosylphosphatidylinositol-anchored Proteases of Candida albicans Target Proteins Necessary for Both Cellular Processes and Host-Pathogen Interactions. Journal of Biological Chemistry, 2006, 281, 688-694.	3.4	222
8	Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation. PLoS Pathogens, 2014, 10, e1004050.	4.7	215
9	Outer Chain N-Glycans Are Required for Cell Wall Integrity and Virulence of Candida albicans. Journal of Biological Chemistry, 2006, 281, 90-98.	3.4	214
10	Lactate signalling regulates fungal β-glucan masking and immune evasion. Nature Microbiology, 2017, 2, 16238.	13.3	197
11	Elevated Cell Wall Chitin in Candida albicans Confers Echinocandin Resistance <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2012, 56, 208-217.	3.2	181
12	Differential Adaptation of Candida albicans In Vivo Modulates Immune Recognition by Dectin-1. PLoS Pathogens, 2013, 9, e1003315.	4.7	181
13	Mnt1p and Mnt2p of Candida albicans Are Partially Redundant α-1,2-Mannosyltransferases That Participate in O-Linked Mannosylation and Are Required for Adhesion and Virulence. Journal of Biological Chemistry, 2005, 280, 1051-1060.	3.4	173
14	Candida albicans Pmr1p, a Secretory Pathway P-type Ca2+/Mn2+-ATPase, Is Required for Glycosylation and Virulence. Journal of Biological Chemistry, 2005, 280, 23408-23415.	3.4	167
15	The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Molecular Microbiology, 2004, 53, 969-983.	2.5	166
16	Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathogens, 2017, 13, e1006403.	4.7	141
17	Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice. Mycoses, 2005, 48, 151-161.	4.0	138
18	Property Differences among the Four Major <i>Candida albicans</i> Strain Clades. Eukaryotic Cell, 2009, 8, 373-387.	3.4	138

#	Article	IF	CITATIONS
19	The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathogens, 2018, 14, e1006978.	4.7	137
20	Niche-Specific Activation of the Oxidative Stress Response by the Pathogenic Fungus Candida albicans. Infection and Immunity, 2007, 75, 2143-2151.	2.2	125
21	Loss of Cell Wall Mannosylphosphate in Candida albicans Does Not Influence Macrophage Recognition. Journal of Biological Chemistry, 2004, 279, 39628-39635.	3.4	123
22	GFP as a quantitative reporter of gene regulation inCandida albicans. Yeast, 2004, 21, 333-340.	1.7	113
23	CO2 Acts as a Signalling Molecule in Populations of the Fungal Pathogen Candida albicans. PLoS Pathogens, 2010, 6, e1001193.	4.7	104
24	The Mnn2 Mannosyltransferase Family Modulates Mannoprotein Fibril Length, Immune Recognition and Virulence of Candida albicans. PLoS Pathogens, 2013, 9, e1003276.	4.7	102
25	Genetic Dissection of Azole Resistance Mechanisms in <i>Candida albicans</i> and Their Validation in a Mouse Model of Disseminated Infection. Antimicrobial Agents and Chemotherapy, 2010, 54, 1476-1483.	3.2	96
26	Thioredoxin Regulates Multiple Hydrogen Peroxide-Induced Signaling Pathways in <i>Candida albicans</i> . Molecular and Cellular Biology, 2010, 30, 4550-4563.	2.3	93
27	Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans. Fungal Genetics and Biology, 2011, 48, 297-305.	2.1	89
28	Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genetics and Biology, 2009, 46, 210-219.	2.1	87
29	C-type lectin receptors and cytokines in fungal immunity. Cytokine, 2012, 58, 89-99.	3.2	87
30	<i>Candida albicans</i> Chitin Increases Arginase-1 Activity in Human Macrophages, with an Impact on Macrophage Antimicrobial Functions. MBio, 2017, 8, .	4.1	87
31	Peroxisomal Fatty Acid β-Oxidation Is Not Essential for Virulence of Candida albicans. Eukaryotic Cell, 2006, 5, 1847-1856.	3.4	85
32	Comparative Transcript Profiling of Candida albicans and Candida dubliniensis Identifies <i>SFL2</i> , a C. albicans Gene Required for Virulence in a Reconstituted Epithelial Infection Model. Eukaryotic Cell, 2010, 9, 251-265.	3.4	78
33	Hosting Infection: Experimental Models to Assay <i>Candida</i> Virulence. International Journal of Microbiology, 2012, 2012, 1-12.	2.3	76
34	The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence. PLoS Pathogens, 2016, 12, e1005566.	4.7	74
35	<i>Candida albicans</i> colonization and dissemination from the murine gastrointestinal tract: the influence of morphology and Th17 immunity. Cellular Microbiology, 2015, 17, 445-450.	2.1	66
36	Efficacy of Caspofungin and Voriconazole Combinations in Experimental Aspergillosis. Antimicrobial Agents and Chemotherapy, 2005, 49, 3697-3701.	3.2	65

DONNA M MACCALLUM

#	Article	IF	CITATIONS
37	Ybp1 and Gpx3 Signaling in <i>Candida albicans</i> Govern Hydrogen Peroxide-Induced Oxidation of the Cap1 Transcription Factor and Macrophage Escape. Antioxidants and Redox Signaling, 2013, 19, 2244-2260.	5.4	65
38	Early-Expressed Chemokines Predict Kidney Immunopathology in Experimental Disseminated Candida albicans Infections. PLoS ONE, 2009, 4, e6420.	2.5	64
39	Host-Imposed Copper Poisoning Impacts Fungal Micronutrient Acquisition during Systemic Candida albicans Infections. PLoS ONE, 2016, 11, e0158683.	2.5	64
40	Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of <i>Candida albicans</i> . Molecular Microbiology, 2011, 79, 1574-1593.	2.5	59
41	Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nature Communications, 2018, 9, 5288.	12.8	56
42	Expansion of Foxp3 ⁺ Tâ€cell populations by <i>Candida albicans</i> enhances both Th17â€cell responses and fungal dissemination after intravenous challenge. European Journal of Immunology, 2014, 44, 1069-1083.	2.9	55
43	Functional specialization and differential regulation of shortâ€chain carboxylic acid transporters in the pathogen <i>Candida albicans</i> . Molecular Microbiology, 2010, 75, 1337-1354.	2.5	54
44	Dectin-1 Is Not Required for Controlling Candida albicans Colonization of the Gastrointestinal Tract. Infection and Immunity, 2012, 80, 4216-4222.	2.2	54
45	Inhibition of Classical and Alternative Modes of Respiration in <i>Candida albicans</i> Leads to Cell Wall Remodeling and Increased Macrophage Recognition. MBio, 2019, 10, .	4.1	53
46	Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Molecular Microbiology, 2007, 66, 915-929.	2.5	50
47	Massive induction of innate immune response to <i>Candida albicans</i> in the kidney in a murine intravenous challenge model. FEMS Yeast Research, 2009, 9, 1111-1122.	2.3	49
48	The contribution of mouse models to our understanding of systemic candidiasis. FEMS Microbiology Letters, 2011, 320, 1-8.	1.8	49
49	Fungal Iron Availability during Deep Seated Candidiasis Is Defined by a Complex Interplay Involving Systemic and Local Events. PLoS Pathogens, 2013, 9, e1003676.	4.7	48
50	MAPKKK-independent Regulation of the Hog1 Stress-activated Protein Kinase in Candida albicans. Journal of Biological Chemistry, 2011, 286, 42002-42016.	3.4	46
51	Pho4 mediates phosphate acquisition in <i>Candida albicans</i> and is vital for stress resistance and metal homeostasis. Molecular Biology of the Cell, 2016, 27, 2784-2801.	2.1	46
52	Candida albicans Iff11, a Secreted Protein Required for Cell Wall Structure and Virulence. Infection and Immunity, 2007, 75, 2922-2928.	2.2	45
53	Wild-type <i>Drosophila melanogaster</i> as an alternative model system for investigating the pathogenicity of <i>Candida albicans</i> . DMM Disease Models and Mechanisms, 2011, 4, 504-514.	2.4	45
54	Elevated catalase expression in a fungal pathogen is a double-edged sword of iron. PLoS Pathogens, 2017, 13, e1006405.	4.7	43

#	Article	IF	CITATIONS
55	Different Consequences of ACE2 and SWI5 Gene Disruptions for Virulence of Pathogenic and Nonpathogenic Yeasts. Infection and Immunity, 2006, 74, 5244-5248.	2.2	42
56	Candida albicans GRX2, encoding a putative glutaredoxin, is required for virulence in a murine model. Genetics and Molecular Research, 2007, 6, 1051-63.	0.2	41
57	Carnitine-Dependent Transport of Acetyl Coenzyme A in <i>Candida albicans</i> Is Essential for Growth on Nonfermentable Carbon Sources and Contributes to Biofilm Formation. Eukaryotic Cell, 2008, 7, 610-618.	3.4	40
58	An ex vivo Human Skin Model to Study Superficial Fungal Infections. Frontiers in Microbiology, 2019, 10, 1172.	3.5	40
59	Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology (United Kingdom), 2005, 151, 3381-3394.	1.8	39
60	Genomeâ€wide gene expression profiling and a forward genetic screen show that differential expression of the sodium ion transporter Ena21 contributes to the differential tolerance of <i>Candida albicans</i> and <i>Candida dubliniensis</i> to osmotic stress. Molecular Microbiology, 2009, 72, 216-228.	2.5	37
61	Contribution of Fdh3 and Glr1 to Glutathione Redox State, Stress Adaptation and Virulence in Candida albicans. PLoS ONE, 2015, 10, e0126940.	2.5	35
62	Echinocandin resistance due to simultaneous FKS mutation and increased cell wall chitin in a Candida albicans bloodstream isolate following brief exposure to caspofungin. Journal of Medical Microbiology, 2012, 61, 1330-1334.	1.8	34
63	Need for Early Antifungal Treatment Confirmed in Experimental Disseminated <i>Candida albicans</i> Infection. Antimicrobial Agents and Chemotherapy, 2004, 48, 4911-4914.	3.2	29
64	General hospital outbreak of invasive candidiasis due to azole-resistant <i>Candida parapsilosis</i> associated with an Erg11 Y132F mutation. Medical Mycology, 2021, 59, 664-671.	0.7	29
65	Blocking two-component signalling enhances Candida albicans virulence and reveals adaptive mechanisms that counteract sustained SAPK activation. PLoS Pathogens, 2017, 13, e1006131.	4.7	28
66	The environmental stress sensitivities of pathogenic Candida species, including Candida auris, and implications for their spread in the hospital setting. Medical Mycology, 2020, 58, 744-755.	0.7	27
67	Enhanced efficacy of synergistic combinations of antimicrobial peptides with caspofungin versus Candida albicans in insect and murine models of systemic infection. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 1055-1062.	2.9	25
68	Role of the Candida albicans MNN1 gene family in cell wall structure and virulence. BMC Research Notes, 2013, 6, 294.	1.4	23
69	Cytokine Measurement Using Cytometric Bead Arrays. Methods in Molecular Biology, 2012, 845, 425-434.	0.9	21
70	Influence of grapefruit juice on itraconazole plasma levels in mice and guinea pigs. Journal of Antimicrobial Chemotherapy, 2002, 50, 219-224.	3.0	20
71	Multicenter Collaborative Study for Standardization of <i>Candida albicans</i> Genotyping Using a Polymorphic Microsatellite Marker. Journal of Clinical Microbiology, 2010, 48, 2578-2581.	3.9	19
72	Stress-induced nuclear accumulation is dispensable for Hog1-dependent gene expression and virulence in a fungal pathogen. Scientific Reports, 2017, 7, 14340.	3.3	17

#	Article	IF	CITATIONS
73	Candida Infections and Modelling Disease. , 2010, , 41-67.		17
74	Amplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp PLoS Genetics, 2016, 12, e1006373.	3.5	16
75	Three Related Enzymes in Candida albicans Achieve Arginine- and Agmatine-Dependent Metabolism That Is Essential for Growth and Fungal Virulence. MBio, 2020, 11, .	4.1	15
76	Multiple functions of DOA1 in Candida albicans. Microbiology (United Kingdom), 2007, 153, 1026-1041.	1.8	15
77	Differential Regulation of Kidney and Spleen Cytokine Responses in Mice Challenged with Pathology-Standardized Doses of <i>Candida albicans</i> Mannosylation Mutants. Infection and Immunity, 2011, 79, 146-152.	2.2	14
78	Murine Model for Fusarium oxysporum Invasive Fusariosis Reveals Organ-Specific Structures for Dissemination and Long-Term Persistence. PLoS ONE, 2014, 9, e89920.	2.5	14
79	Mouse Model of Invasive Fungal Infection. Methods in Molecular Biology, 2013, 1031, 145-153.	0.9	11
80	Identification of a Novel Response Regulator, Crr1, That Is Required for Hydrogen Peroxide Resistance in Candida albicans. PLoS ONE, 2011, 6, e27979.	2.5	9
81	A Bright Future for Fluorescence Imaging of Fungi in Living Hosts. Journal of Fungi (Basel,) Tj ETQq1 1 0.78431	4 rgBT_/Ove	erlogk 10 Tf 50
82	Host Responses in an Ex Vivo Human Skin Model Challenged With Malassezia sympodialis. Frontiers in Cellular and Infection Microbiology, 2020, 10, 561382.	3.9	8
83	Efficacy of parenteral itraconazole against disseminated Candida albicans infection in two mouse strains. Journal of Antimicrobial Chemotherapy, 2002, 50, 225-229.	3.0	6
84	The Candida albicans pH-regulated KER1 gene encodes a lysine/glutamic-acid-rich plasma-membrane protein that is involved in cell aggregation. Microbiology (United Kingdom), 2004, 150, 2641-2651.	1.8	6
85	Mouse Intravenous Challenge Models and Applications. Methods in Molecular Biology, 2012, 845, 499-509.	0.9	6
86	A novel renal epithelial cell in vitro assay to assess <i>Candida albicans</i> virulence. Virulence, 2014, 5, 286-296.	4.4	5
87	Safety aspects of working withCandida albicans-infected mice. Medical Mycology, 2004, 42, 305-309.	0.7	4
88	Monoclonal Antibodies Targeting Surface-Exposed Epitopes of Candida albicans Cell Wall Proteins Confer <i>In Vivo</i> Protection in an Infection Model. Antimicrobial Agents and Chemotherapy, 2022, 66, e0195721.	3.2	4
89	Blocking Polyphosphate Mobilization Inhibits Pho4 Activation and Virulence in the Pathogen Candida albicans. MBio, 2022, 13, e0034222.	4.1	2
90	Mouse Gastrointestinal Colonization Model for Candida auris. Methods in Molecular Biology, 2022, , 329-340.	0.9	2

#	Article	IF	CITATIONS
91	Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of <i>Candida albicans</i> . Molecular Microbiology, 2012, 84, 594-594.	2.5	1
92	Utility of Multi Locus Sequence Typing (MLST) in the Investigation of a Cluster of Candida albicans Infection in Recipients of Solid Organs from a Common Donor. Transplantation, 2018, 102, S99.	1.0	0
93	206.3: Utility of multilocus sequence typing (MLST) in the investigation of a cluster of Candida albicans infection in recipients of solid organs from a common donor Transplantation, 2019, 103, S24-S25.	1.0	0
94	Candida Albicans: New Insights in Infection, Disease, and Treatment. , 2007, , 99-129.		0
95	Virulence traits and differential translocation of gut-derived Candida albicans. Access Microbiology, 2022, 4, .	0.5	0