
Daria V Ilatovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9494837/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional role of histamine receptors in the renal cortical collecting duct cells. American Journal of Physiology - Cell Physiology, 2022, , .	4.6	2
2	Intact mitochondrial substrate efflux is essential for prevention of tubular injury in a sex-dependent manner. JCI Insight, 2022, 7, .	5.0	5
3	Effects of elevation of ANP and its deficiency on cardiorenal function. JCI Insight, 2022, 7, .	5.0	8
4	Editorial: Role of Molecular Modulators in Combatting Cardiac Injury and Disease: Prevention, Repair and Regeneration. Frontiers in Cardiovascular Medicine, 2022, 9, 861442.	2.4	0
5	Epithelial Sodium Channel Alpha Subunit (αENaC) Is Associated with Inverse Salt Sensitivity of Blood Pressure. Biomedicines, 2022, 10, 981.	3.2	3
6	Nitric-Oxide-Mediated Signaling in Podocyte Pathophysiology. Biomolecules, 2022, 12, 745.	4.0	5
7	Practical notes on popular statistical tests in renal physiology. American Journal of Physiology - Renal Physiology, 2022, 323, F389-F400.	2.7	5
8	Immune regulation of cardiac fibrosis post myocardial infarction. Cellular Signalling, 2021, 77, 109837.	3.6	31
9	The implications of histamine metabolism and signaling in renal function. Physiological Reports, 2021, 9, e14845.	1.7	7
10	Remodeling of Purinergic Receptor 2 Signaling in Podocytes In Response to Diabetic Kidney Disease. FASEB Journal, 2021, 35, .	0.5	0
11	Probenecid inhibits cysts development in Pkd1 ^{RC/RC} mice. FASEB Journal, 2021, 35, .	0.5	0
12	Physiological effects of histamine on renal function in saltâ€sensitive hypertension. FASEB Journal, 2021, 35, .	0.5	0
13	Sex differences in renal mitochondrial function of young Sprague Dawley rats. FASEB Journal, 2021, 35, .	0.5	0
14	Characterization of purinergic receptor 2 signaling in podocytes from diabetic kidneys. IScience, 2021, 24, 102528.	4.1	10
15	Insights Into the Molecular Mechanisms of Polycystic Kidney Diseases. Frontiers in Physiology, 2021, 12, 693130.	2.8	14
16	FGF21 prevents low-protein diet-induced renal inflammation in aged mice. American Journal of Physiology - Renal Physiology, 2021, 321, F356-F368.	2.7	8
17	Chronic <i>Porphyromonas gingivalis</i> lipopolysaccharide induces adverse myocardial infarction wound healing through activation of CD8 ⁺ T cells. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H948-H962.	3.2	15
18	Inhibition of neprilysin with sacubitril without RAS blockage aggravates renal disease in Dahl SS rats. Renal Failure. 2021, 43, 315-324.	2.1	2

#	Article	IF	CITATIONS
19	Recent advances in understanding ion transport mechanisms in polycystic kidney disease. Clinical Science, 2021, 135, 2521-2540.	4.3	10
20	NOX4â€dependent regulation of ENaC in hypertension and diabetic kidney disease. FASEB Journal, 2020, 34, 13396-13408.	0.5	21
21	Sex differences in renal mitochondrial function: a hormone-gous opportunity for research. American Journal of Physiology - Renal Physiology, 2020, 319, F1117-F1124.	2.7	25
22	Differential effects of low-dose sacubitril and/or valsartan on renal disease in salt-sensitive hypertension. American Journal of Physiology - Renal Physiology, 2020, 319, F63-F75.	2.7	12
23	Comprehensive assessment of mitochondrial respiratory function in freshly isolated nephron segments. American Journal of Physiology - Renal Physiology, 2020, 318, F1237-F1245.	2.7	9
24	Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clinica Chimica Acta, 2020, 503, 145-150.	1.1	43
25	Fundamentals of Epithelial Na+ Absorption. Physiology in Health and Disease, 2020, , 291-336.	0.3	0
26	Effects of atrial natriuretic peptide on mitochondria function in cortical collecting duct cells. FASEB Journal, 2020, 34, 1-1.	0.5	0
27	The effects of low dose LCZ 696 on kidney function in Dahl SS rats. FASEB Journal, 2020, 34, 1-1.	0.5	0
28	Abstract P019: Renal Mitochondrial Bioenergetics In Salt-sensitive Hypertension Is Affected By ANP. Hypertension, 2020, 76, .	2.7	0
29	CD8 ⁺ T-cells negatively regulate inflammation post-myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H581-H596.	3.2	56
30	FP230ROLE OF PROTEASE-ACTIVATED RECEPTORS IN REGULATION OF CALCIUM SIGNALING IN PODOCYTES IN TYPE 2 DIABETIC NEPHROPATHY. Nephrology Dialysis Transplantation, 2019, 34, .	0.7	0
31	Adaptive immunity-driven inflammation and cardiovascular disease. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H1254-H1257.	3.2	21
32	Regulation of mitochondria function by natriuretic peptides. American Journal of Physiology - Renal Physiology, 2019, 317, F1164-F1168.	2.7	11
33	Progression of diabetic kidney disease in T2DN rats. American Journal of Physiology - Renal Physiology, 2019, 317, F1450-F1461.	2.7	34
34	The exocyst acting through the primary cilium is necessary for renal ciliogenesis, cystogenesis, and tubulogenesis. Journal of Biological Chemistry, 2019, 294, 6710-6718.	3.4	17
35	Salt-deficient diet exacerbates cystogenesis in ARPKD via epithelial sodium channel (ENaC). EBioMedicine, 2019, 40, 663-674.	6.1	24
36	Renal Glomerular Mitochondria Function in Salt-Sensitive Hypertension. Frontiers in Physiology, 2019, 10, 1588.	2.8	18

#	Article	IF	CITATIONS
37	The Role of Histamine H 3 Receptors in ENaCâ€dependent Sodium Reabsorption in the Cortical Collecting Ducts. FASEB Journal, 2019, 33, 575.8.	0.5	0
38	Role of Nox4 in Angiotensin IIâ€Mediated Changes in Volume Dynamics and Nitric Oxide Production in Podocytes. FASEB Journal, 2019, 33, 575.1.	0.5	0
39	AVPâ€ANP Signaling Axis in Saltâ€Sensitive Hypertension. FASEB Journal, 2019, 33, 750.2.	0.5	Ο
40	Mitochondria ROS in podocytes of freshly isolated glomeruli during saltâ€sensitive hypertension. FASEB Journal, 2019, 33, 569.6.	0.5	0
41	Nitric oxide production by glomerular podocytes. Nitric Oxide - Biology and Chemistry, 2018, 72, 24-31.	2.7	14
42	Characterization of purinergic receptor expression in ARPKD cystic epithelia. Purinergic Signalling, 2018, 14, 485-497.	2.2	21
43	A NOX4/TRPC6 Pathway in Podocyte Calcium Regulation and Renal Damage in Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1917-1927.	6.1	95
44	Protective role of Trpc6 knockout in the progression of diabetic kidney disease. American Journal of Physiology - Renal Physiology, 2018, 315, F1091-F1097.	2.7	54
45	An Offer We Cannot Refuse: Cell-Free DNA as a Novel Biomarker of Myocardial Infarction. American Journal of the Medical Sciences, 2018, 356, 88-89.	1.1	4
46	The Protective Role of TRPC6 Knockout in the Progression of Diabetic Nephropathy. FASEB Journal, 2018, 32, .	0.5	0
47	The Protective Effects of Atrial Natriuretic Peptide Infusion in Saltâ€Sensitive Hypertension. FASEB Journal, 2018, 32, 619.2.	0.5	0
48	Purinergic Receptors Profile in the ARPKD Cystic Epithelia. FASEB Journal, 2018, 32, 624.4.	0.5	0
49	High Salt Diet Induces a Rapid Increase in Blood Pressure and Mortality in the Ren â^'/â^' Dahl SS Rats. FASEB Journal, 2018, 32, 904.4.	0.5	0
50	The Role of Angiotensin II in Glomerular Volume Dynamics and Podocyte Calcium Handling. Scientific Reports, 2017, 7, 299.	3.3	43
51	Essential role of Kir5.1 channels in renal salt handling and blood pressure control. JCI Insight, 2017, 2,	5.0	78
52	Lack of Effects of Metformin and AICAR Chronic Infusion on the Development of Hypertension in Dahl Salt-Sensitive Rats. Frontiers in Physiology, 2017, 8, 227.	2.8	16
53	Monitoring undergraduate student needs and activities at Experimental Biology: APS pilot survey. American Journal of Physiology - Advances in Physiology Education, 2017, 41, 186-193.	1.6	1
54	High salt diet and caffeine: food for thought. Journal of Thoracic Disease, 2016, 8, E1410-E1412.	1.4	0

4

#	Article	IF	CITATIONS
55	Functional and therapeutic importance of purinergic signaling in polycystic kidney disease. American Journal of Physiology - Renal Physiology, 2016, 311, F1135-F1139.	2.7	13
56	Protease-activated receptors in kidney disease progression. American Journal of Physiology - Renal Physiology, 2016, 311, F1140-F1144.	2.7	36
57	Renal sodium transport in renin-deficient Dahl salt-sensitive rats. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2016, 17, 147032031665385.	1.7	17
58	Chronic cathepsin inhibition by E-64 in Dahl salt-sensitive rats. Physiological Reports, 2016, 4, e12950.	1.7	9
59	Two-photon imaging of endothelin-1-mediated intracellular Ca 2+ handling in smooth muscle cells of rat renal resistance arteries. Life Sciences, 2016, 159, 140-143.	4.3	5
60	Fundamentals of Epithelial Na+ Absorption. , 2016, , 49-94.		1
61	Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Scientific Reports, 2015, 5, 17637.	3.3	84
62	Single-channel Analysis and Calcium Imaging in the Podocytes of the Freshly Isolated Glomeruli. Journal of Visualized Experiments, 2015, , e52850.	0.3	21
63	Implementing Patch Clamp and Live Fluorescence Microscopy to Monitor Functional Properties of Freshly Isolated PKD Epithelium. Journal of Visualized Experiments, 2015, , .	0.3	10
64	Cross-talk between insulin and IGF-1 receptors in the cortical collecting duct principal cells: implication for ENaC-mediated Na+ reabsorption. American Journal of Physiology - Renal Physiology, 2015, 308, F713-F719.	2.7	22
65	Impaired epithelial Na+ channel activity contributes to cystogenesis and development of autosomal recessive polycystic kidney disease in PCK rats. Pediatric Research, 2015, 77, 64-69.	2.3	19
66	TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases. American Journal of Physiology - Renal Physiology, 2015, 309, F393-F397.	2.7	89
67	Utilizing a Type 1 Diabetic Nephropathy Model Developed on the Basis of Streptozotocinâ€Treated Dahl SS Rats for the Studies of Calcium Handling in the Podocytes. FASEB Journal, 2015, 29, 964.2.	0.5	Ο
68	Mechanism of Angiotensin II ―Mediated Changes in Glomeruli Permeability and Calcium Influx in Podocytes . FASEB Journal, 2015, 29, 808.22.	0.5	0
69	Nox4â€mediated and Hydrogen Peroxide Dependent Regulation of ENaC In Saltâ€Sensitive Hypertension. FASEB Journal, 2015, 29, 811.23.	0.5	Ο
70	The Regulatory Pathways of Nitric Oxide Production in Glomeruli Podocytes. FASEB Journal, 2015, 29, 808.9.	0.5	0
71	Angiotensin II Dependent Regulation of TRPC6 Calcium Channels in the Podocytes of the STZâ€induced Type 1 Diabetic Dahl SS Rats. FASEB Journal, 2015, 29, 964.1.	0.5	3
72	Angiotensin II has acute effects on TRPC6 channels in podocytes of freshly isolated glomeruli. Kidney International, 2014, 86, 506-514.	5.2	80

#	Article	IF	CITATIONS
73	Arp2/3 complex inhibitors adversely affect actin cytoskeleton remodeling in the cultured murine kidney collecting duct M-1 cells. Cell and Tissue Research, 2013, 354, 783-792.	2.9	20
74	ROS production as a common mechanism of ENaC regulation by EGF, insulin, and IGF-1. American Journal of Physiology - Cell Physiology, 2013, 304, C102-C111.	4.6	55
75	Pharmacological characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli. American Journal of Physiology - Cell Physiology, 2013, 305, C1050-C1059.	4.6	32
76	Epidermal growth factors in the kidney and relationship to hypertension. American Journal of Physiology - Renal Physiology, 2013, 305, F12-F20.	2.7	35
77	Real-time electrochemical detection of ATP and H ₂ O ₂ release in freshly isolated kidneys. American Journal of Physiology - Renal Physiology, 2013, 305, F134-F141.	2.7	30
78	Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. FASEB Journal, 2013, 27, 2723-2732.	0.5	41
79	Deficiency of Renal Cortical EGF Increases ENaC Activity and Contributes to Salt-Sensitive Hypertension. Journal of the American Society of Nephrology: JASN, 2013, 24, 1053-1062.	6.1	69
80	Single-Channel Analysis of TRPC Channels in the Podocytes of Freshly Isolated Glomeruli. Methods in Molecular Biology, 2013, 998, 355-369.	0.9	22
81	The role of the Arp2/3 complex in the cytoskeleton organization and actinâ€mediated sodium reabsorption in kidney epithelial cells. FASEB Journal, 2013, 27, 1145.8.	0.5	Ο
82	Renin knock out modulates sodium reabsorption in the Dahl saltâ€sensitive rats. FASEB Journal, 2013, 27, 909.6.	0.5	0
83	Acute effects of angiotensin II on TRPC6 channels in the podocytes of the freshly isolated glomeruli. FASEB Journal, 2013, 27, 913.46.	0.5	Ο
84	Pharmacological characterization of the P2 receptors profile in the podocytes of the Sprague Dawley rat glomeruli. FASEB Journal, 2013, 27, 912.22.	0.5	0
85	Realâ€ŧime electrochemical detection of endogenous substance release in freshly isolated organs. FASEB Journal, 2013, 27, 910.16.	0.5	1
86	Role of the epithelial Na + channels (ENaC) in development of ARPKD. FASEB Journal, 2013, 27, 1148.1.	0.5	0
87	Angiotensin II Increases Activity of the Epithelial Na+ Channel (ENaC) in Distal Nephron Additively to Aldosterone. Journal of Biological Chemistry, 2012, 287, 660-671.	3.4	127
88	G-protein signaling modulator 1 deficiency accelerates cystic disease in an orthologous mouse model of autosomal dominant polycystic kidney disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21462-21467.	7.1	33
89	Mechanisms of epithelial sodium channel (ENaC) regulation by cortactin: Involvement of dynamin. Cell and Tissue Biology, 2012, 6, 52-59.	0.4	3
90	Role of the epithelial sodium channel (ENaC) in the development of saltâ€sensitive hypertension. FASEB Journal, 2012, 26, 867.8.	0.5	0

6

#	Article	IF	CITATIONS
91	Crosstalk between insulin and IGFâ€1 receptors in principal cells: implication for ENaCâ€mediated sodium reabsorption. FASEB Journal, 2012, 26, 1068.5.	0.5	0
92	ROS production as a common mechanism of ENaC regulation by EGF, insulin and IGFâ \in 1. FASEB Journal, 2012, 26, .	0.5	0
93	Cortical actin binding protein cortactin mediates ENaC activity <i>via</i> Arp2/3 complex. FASEB Journal, 2011, 25, 2688-2699.	0.5	45
94	NSAIDs acutely inhibit TRPC channels in freshly isolated rat glomeruli. Biochemical and Biophysical Research Communications, 2011, 408, 242-247.	2.1	20
95	Novel Role of Rac1/WAVE Signaling Mechanism in Regulation of the Epithelial Na ⁺ Channel. Hypertension, 2011, 57, 996-1002.	2.7	33
96	Effects of cytochrome <i>P</i> -450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). American Journal of Physiology - Renal Physiology, 2011, 301, F672-F681.	2.7	52
97	Role of NSAIDs in regulation of TRPC channels in isolated rat glomeruli. FASEB Journal, 2011, 25, 1041.1.	0.5	0
98	Novel role of Rac1/WAVE signaling mechanism in regulation of the epithelial Na ⁺ channel (ENaC). FASEB Journal, 2011, 25, 1039.1.	0.5	0
99	The actin cytoskeleton and small G protein RhoA are not involved in flow-dependent activation of ENaC. BMC Research Notes, 2010, 3, 210.	1.4	23
100	Intact Cytoskeleton Is Required for Small G Protein Dependent Activation of the Epithelial Na+ Channel. PLoS ONE, 2010, 5, e8827.	2.5	43
101	Endothelin-1 Inhibits the Epithelial Na+ Channel through βPix/14-3-3/Nedd4-2. Journal of the American Society of Nephrology: JASN, 2010, 21, 833-843.	6.1	63