List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/949425/publications.pdf Version: 2024-02-01

RAHRAM DIAFARI ROLIHANI

#	Article	IF	CITATIONS
1	Acoustic band structure of periodic elastic composites. Physical Review Letters, 1993, 71, 2022-2025.	7.8	2,336
2	Two-dimensional phononic crystals: Examples and applications. Surface Science Reports, 2010, 65, 229-291.	7.2	462
3	Evidence of Fano-Like Interference Phenomena in Locally Resonant Materials. Physical Review Letters, 2002, 88, 225502.	7.8	314
4	Low-frequency gaps in a phononic crystal constituted of cylindrical dots deposited on a thin homogeneous plate. Physical Review B, 2008, 78, .	3.2	307
5	A one-dimensional optomechanical crystal with a complete phononic band gap. Nature Communications, 2014, 5, 4452.	12.8	138
6	Gradient index phononic crystals and metamaterials. Nanophotonics, 2019, 8, 685-701.	6.0	108
7	Tunable waveguide and cavity in a phononic crystal plate by controlling whispering-gallery modes in hollow pillars. Physical Review B, 2016, 93, .	3.2	100
8	Photon, electron, magnon, phonon and plasmon mono-mode circuits. Surface Science Reports, 2004, 54, 1-156.	7.2	99
9	Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New Journal of Physics, 2009, 11, 103020.	2.9	99
10	Enhanced acousto-optic interactions in a one-dimensional phoxonic cavity. Physical Review B, 2010, 82, .	3.2	96
11	Physics of surface vibrational resonances: pillared phononic crystals, metamaterials, and metasurfaces. Reports on Progress in Physics, 2021, 84, 086502.	20.1	94
12	Acousto-optic couplings in two-dimensional phoxonic crystal cavities. Applied Physics Letters, 2012, 101, 061109.	3.3	91
13	Modeling light-sound interaction in nanoscale cavities and waveguides. Nanophotonics, 2014, 3, 413-440.	6.0	82
14	Giant gaps in photonic band structures. Physical Review B, 1998, 57, R9388-R9391.	3.2	79
15	Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmissions in serial loop structures. Journal of Applied Physics, 2004, 95, 1102-1113.	2.5	73
16	Transmission gaps and Fano resonances in an acoustic waveguide: analytical model. Journal of Physics Condensed Matter, 2008, 20, 255212.	1.8	73
17	Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects. Journal of Applied Physics, 2014, 115, .	2.5	71
18	Exceptional Point Enhances Sensitivity of Optomechanical Mass Sensors. Physical Review Applied, 2019, 12, .	3.8	69

#	Article	IF	CITATIONS
19	Surface and interface elastic waves in superlattices: Transverse localized and resonant modes. Physical Review B, 1993, 48, 10987-10997.	3.2	68
20	Robustness of conventional and topologically protected edge states in phononic crystal plates. Physical Review B, 2018, 98, .	3.2	64
21	Theory of surface and interface transverse elastic waves inN-layer superlattices. Physical Review B, 1996, 54, 14728-14741.	3.2	63
22	Engineering the Hypersonic Phononic Band Gap of Hybrid Bragg Stacks. Nano Letters, 2012, 12, 3101-3108.	9.1	63
23	Phononic Crystal Plate with Hollow Pillars Actively Controlled by Fluid Filling. Crystals, 2016, 6, 64.	2.2	59
24	Defect modes in one-dimensional comblike photonic waveguides. Physical Review B, 1999, 59, 13446-13452.	3.2	58
25	Negative effective mass density of acoustic metamaterial plate decorated with low frequency resonant pillars. Journal of Applied Physics, 2014, 116, .	2.5	57
26	Robust Fano resonance in a topological mechanical beam. Physical Review B, 2020, 101, .	3.2	57
27	Acoustic spectral gaps and discrete transmisson in slender tubes. Solid State Communications, 1998, 106, 659-663.	1.9	55
28	Simultaneous control of the <i>S</i> and <i>A</i> Lamb modes by graded phononic crystal plates. Journal of Applied Physics, 2015, 117, .	2.5	55
29	Intelligent on-demand design of phononic metamaterials. Nanophotonics, 2022, 11, 439-460.	6.0	55
30	Theoretical analysis of the density of states and phase times: Application to resonant electromagnetic modes in finite superlattices. Physical Review B, 2001, 63, .	3.2	54
31	Elastic Metasurfaces for Deep and Robust Subwavelength Focusing and Imaging. Physical Review Applied, 2021, 15, .	3.8	53
32	Large magnonic band gaps and defect modes in one-dimensional comblike structures. Physical Review B, 1999, 59, 8709-8719.	3.2	46
33	Optomechanic interaction in a corrugated phoxonic nanobeam cavity. Physical Review B, 2014, 89, .	3.2	46
34	Rayleigh Waves in Phononic Crystal Made of Multilayered Pillars: Confined Modes, Fano Resonances, and Acoustically Induced Transparency. Physical Review Applied, 2018, 9, .	3.8	45
35	Topological cavities in phononic plates for robust energy harvesting. Mechanical Systems and Signal Processing, 2022, 162, 108047.	8.0	45
36	Pillar-type acoustic metasurface. Physical Review B, 2017, 96, .	3.2	44

#	Article	IF	CITATIONS
37	Trapped-mode-induced Fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal. Physical Review B, 2018, 97, .	3.2	44
38	Broadband Rayleigh wave attenuation by gradient metamaterials. International Journal of Mechanical Sciences, 2021, 205, 106592.	6.7	43
39	Defect-Controlled Hypersound Propagation in Hybrid Superlattices. Physical Review Letters, 2013, 111, 164301.	7.8	42
40	Effective medium theory for elastic metamaterials in thin elastic plates. Physical Review B, 2014, 90, .	3.2	41
41	Topological states in twisted pillared phononic plates. Extreme Mechanics Letters, 2020, 39, 100777.	4.1	41
42	Gradient Index Devices for the Full Control of Elastic Waves in Plates. Scientific Reports, 2016, 6, 24437.	3.3	40
43	Theoretical and experimental evidence of Fano-like resonances in simple monomode photonic circuits. Journal of Applied Physics, 2013, 113, .	2.5	39
44	Surface electromagnetic waves in Fibonacci superlattices: Theoretical and experimental results. Physical Review B, 2006, 74, .	3.2	38
45	Surface states in one-dimensional photonic band gap structures. Vacuum, 2001, 63, 177-183.	3.5	37
46	Propagation and localization of acoustic waves in Fibonacci phononic circuits. Journal of Physics Condensed Matter, 2005, 17, 4245-4262.	1.8	36
47	Topological valley, pseudospin, and pseudospin-valley protected edge states in symmetric pillared phononic crystals. Physical Review B, 2019, 100, .	3.2	35
48	Asymmetric topological state in an elastic beam based on symmetry principle. International Journal of Mechanical Sciences, 2020, 186, 105897.	6.7	35
49	Experimental realization of a pillared metasurface for flexural wave focusing. APL Materials, 2021, 9, .	5.1	35
50	Propagation and localization of electromagnetic waves in quasiperiodic serial loop structures. Physical Review E, 2005, 72, 056601.	2.1	34
51	Optomechanical interactions in two-dimensional Si and GaAs phoXonic cavities. Journal of Physics Condensed Matter, 2014, 26, 015005.	1.8	33
52	Stopping and filtering waves in phononic circuits. Journal of Physics Condensed Matter, 2004, 16, 37-44.	1.8	32
53	Magnonic circuits and crystals. Surface Science Reports, 2011, 66, 29-75.	7.2	32
54	Phononic crystal plate with hollow pillars connected by thin bars. Journal Physics D: Applied Physics, 2017, 50, 035301.	2.8	32

#	Article	IF	CITATIONS
55	Tunable Fano resonances of Lamb modes in a pillared metasurface. Journal Physics D: Applied Physics, 2017, 50, 425304.	2.8	31
56	Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model. Journal of Physics Condensed Matter, 2014, 26, 505901.	1.8	30
57	Phoxonic crystals and cavity optomechanics. Comptes Rendus Physique, 2016, 17, 555-564.	0.9	30
58	A perspective on elastic metastructures for energy harvesting. Applied Physics Letters, 2022, 120, .	3.3	30
59	Double-Negative Pillared Elastic Metamaterial. Physical Review Applied, 2018, 10, .	3.8	28
60	Love waves dispersion by phononic pillars for nano-particle mass sensing. Applied Physics Letters, 2019, 114, .	3.3	27
61	Propagation and attenuation of Rayleigh and pseudo surface waves in viscoelastic metamaterials. Journal of Applied Physics, 2021, 129, .	2.5	26
62	Temperature biosensor based on triangular lattice phononic crystals. APL Materials, 2021, 9, .	5.1	26
63	Lightweight sound-absorbing metastructures with perforated fish-belly panels. International Journal of Mechanical Sciences, 2022, 226, 107396.	6.7	26
64	Two types of modes in finite size one-dimensional coaxial photonic crystals: General rules and experimental evidence. Physical Review E, 2007, 76, 026607.	2.1	25
65	Robust edge states of subwavelength chiral phononic plates. Extreme Mechanics Letters, 2021, 44, 101209.	4.1	25
66	Phononic and photonic crystals for sensing applications. Advances in Applied Mechanics, 2019, 52, 105-145.	2.3	22
67	Fundamentals, progress and perspectives on high-frequency phononic crystals. Journal Physics D: Applied Physics, 2022, 55, 193002.	2.8	22
68	Acoustic resonances of adsorbed wires and channels. Journal of Physics Condensed Matter, 1993, 5, 8177-8194.	1.8	19
69	Phononic Crystal Made of Multilayered Ridges on a Substrate for Rayleigh Waves Manipulation. Crystals, 2017, 7, 372.	2.2	19
70	Aharonov-Bohm-effect induced transparency and reflection in mesoscopic rings side coupled to a quantum wire. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113770.	2.7	19
71	Acoustic analogue of electromagnetically induced transparency and Autler–Townes splitting in pillared metasurfaces. Journal Physics D: Applied Physics, 2018, 51, 494004.	2.8	17
72	Photonic demultiplexer based on electromagnetically induced transparency resonances. Journal Physics D: Applied Physics, 2019, 52, 075101.	2.8	17

#	Article	IF	CITATIONS
73	Comparison of density of states and scattering parameters in coaxial photonic crystals: Theory and experiment. Physical Review B, 2020, 102, .	3.2	17
74	Elastic stubbed metamaterial plate with torsional resonances. Ultrasonics, 2020, 106, 106142.	3.9	17
75	Invisible omnidirectional lens for flexural waves in thin elastic plates. Journal Physics D: Applied Physics, 2017, 50, 225301.	2.8	16
76	Polarization-dependent and valley-protected Lamb waves in asymmetric pillared phononic crystals. Journal Physics D: Applied Physics, 2019, 52, 505302.	2.8	16
77	Topological surface wave metamaterials for robust vibration attenuation and energy harvesting. Mechanics of Advanced Materials and Structures, 2022, 29, 4759-4767.	2.6	16
78	Non-Hermitian skin effect in a phononic beam based on piezoelectric feedback control. Applied Physics Letters, 2022, 121, .	3.3	16
79	Resonant tunnelling of acoustic waves between two slender tubes. Europhysics Letters, 1999, 46, 467-470.	2.0	15
80	Elastoplasmonic interaction in metal-insulator-metal localized surface plasmon systems. Physical Review B, 2016, 94, .	3.2	15
81	Abnormal topological refraction into free medium at subwavelength scale in valley phononic crystal plates. Physical Review B, 2021, 103, .	3.2	15
82	Electromagnetic wave propagation in quasi-periodic photonic circuits. Journal of Physics Condensed Matter, 2007, 19, 246217.	1.8	14
83	Acoustic demultiplexer based on Fano and induced transparency resonances in slender tubes. EPJ Applied Physics, 2020, 90, 10902.	0.7	14
84	Polymer photonic crystal membrane for thermo-regulating textile. Scientific Reports, 2020, 10, 9855.	3.3	14
85	Experimental Evidence of the Existence of Bound States in the Continuum and Fano Resonances in Solid-Liquid Layered Media. Physical Review Applied, 2021, 15, .	3.8	14
86	Conversion between surface acoustic waves and guided modes of a quasi-periodic structured nanobeam. Journal Physics D: Applied Physics, 2019, 52, 32LT01.	2.8	13
87	Optomechanic Coupling in Ag Polymer Nanocomposite Films. Journal of Physical Chemistry C, 2021, 125, 14854-14864.	3.1	13
88	Electromagnetic waves in finite superlattices with buffer and cap layers. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1999, 16, 1703.	1.5	12
89	Multimodal and omnidirectional beam splitters for Lamb modes in elastic plates. AIP Advances, 2016, 6, 121602.	1.3	12
90	Y-shaped magnonic demultiplexer using induced transparency resonances. AIP Advances, 2019, 9, 035011.	1.3	12

#	Article	IF	CITATIONS
91	Plasmonic-induced transparency in a MIM waveguide with two side-coupled cavities. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	10
92	Impact of SiO2 Particles in Polyethylene Textile Membrane for Indoor Personal Heating. Nanomaterials, 2020, 10, 1968.	4.1	10
93	Induced transparency based subwavelength acoustic demultiplexers. Journal Physics D: Applied Physics, 2021, 54, 175301.	2.8	10
94	Transmission and filtering in photonic circuits: effects of absorption and amplification. Progress in Surface Science, 2003, 74, 389-404.	8.3	9
95	Surface Acoustic Waves-Localized Plasmon Interaction in Pillared Phononic Crystals. Physical Review Applied, 2020, 13, .	3.8	9
96	Sonic band gaps in one-dimensional phononic crystals with a symmetric stub. Physical Review B, 2008, 77, .	3.2	8
97	Analytical and numerical study of T-shaped plasmonic demultiplexer based on Fano and induced transparency resonances. Journal Physics D: Applied Physics, 2022, 55, 075106.	2.8	8
98	Superluminal and negative delay times in isotropic-anisotropic one-dimensional photonic crystal. Journal of Applied Physics, 2017, 122, 183106.	2.5	7
99	Compact Waveguide and Guided Beam Pattern Based on the Whispering-Gallery Mode of a Hollow Pillar in a Phononic Crystal Plate. Physical Review Applied, 2018, 10, .	3.8	7
100	Active control of the transmission of Lamb waves through an elastic metamaterial. Journal of Applied Physics, 2020, 128, .	2.5	6
101	Microstubs resonators integrated to bent Y-branch waveguide. Photonics and Nanostructures - Fundamentals and Applications, 2008, 6, 26-31.	2.0	5
102	Vertical Engineering for Large Brillouin Gain in Unreleased Silicon-Based Waveguides. Physical Review Applied, 2021, 15, .	3.8	5
103	Plasmonic Demultiplexer Based on Induced Transparency Resonances: Analytical and Numerical Study. Lecture Notes in Electrical Engineering, 2021, , 239-247.	0.4	5
104	Plasmonic Tamm states in periodic stubbed MIM waveguides: analytical and numerical study. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 600.	2.1	5
105	Three port photonic and plasmonic demultiplexers based on Cross and U-shaped stub structures: Application for filtering and sensing. Journal of Applied Physics, 2022, 131, 153102.	2.5	5
106	A Biosensor Based on Bound States in the Continuum and Fano Resonances in a Solid–Liquid–Solid Triple Layer. Crystals, 2022, 12, 707.	2.2	5
107	Broadband Asymmetric Propagation in Pillared Meta-Plates. Crystals, 2020, 10, 702.	2.2	4
108	Graphene-Based One-Dimensional Terahertz Phononic Crystal: Band Structures and Surface Modes. Nanomaterials, 2020, 10, 2205.	4.1	4

7

#	Article	IF	CITATIONS
109	Scaling Law, Confined and Surface Modes in Photonic Fibonacci Stub Structures: Theory and Experiment. Applied Sciences (Switzerland), 2020, 10, 7767.	2.5	4
110	Acoustic Tamm states in slender tubes. Materials Today: Proceedings, 2021, 45, 7394-7398.	1.8	4
111	Y-Shaped Demultiplexer Photonic Circuits Based on Detuned Stubs: Application to Radiofrequency Domain. Photonics, 2021, 8, 386.	2.0	4
112	Quantization of Acoustic Modes in Dumbbell Nanoparticles. Physical Review Letters, 2022, 128, 048003.	7.8	4
113	Rigorous simulation of nonlinear optomechanical coupling in micro- and nano-structured resonant cavities. International Journal of Optomechatronics, 2018, 12, 11-19.	6.6	3
114	Bound in continuum states and induced transparency in mesoscopic demultiplexer with two outputs. Chinese Physics B, 2020, 29, 127301.	1.4	3
115	Dynamical effective parameters of elastic superlattice with strong acoustic contrast between the constituents. Low Temperature Physics, 2018, 44, 1280-1284.	0.6	2
116	Coupling of Integrated Waveguide and Optomechanic Cavity for Microwave Phonon Excitation in Si Nanobeams. Photonics, 2020, 7, 67.	2.0	2
117	Enhanced phonon-plasmon interaction in film-coupled dimer nanoridges mediated by surface acoustic waves. Optics Express, 2021, 29, 43104.	3.4	2
118	Surface modes in plasmonic stubbed structures. Materials Today: Proceedings, 2021, 45, 7752-7755.	1.8	1
119	Asymmetric Design for a Highâ€Performance Indoor Radiative Heating Fabric. Advanced Materials Technologies, 0, , 2101738.	5.8	1
120	Optical waves in finite layered photonic crystals. , 2021, , 529-568.		0
121	Photonic monomode circuits: comb structures. , 2021, , 219-285.		Ο
122	Fibonacci loop structures: bandgaps, power law, scaling law, confined and surface modes. , 2021, , 333-371.		0
123	Electromagnetic induced transparency, induced absorption, and Fano resonances in photonic circuits. , 2021, , 155-191.		Ο
124	Serial loop structures: photonic bandgaps, confined, cavity, and surface modes. , 2021, , 287-331.		0
125	Evanescent Coupling between Aluminum Pillars. , 2021, , .		0
126	Dynamic thermoregulatory photonic crystal fabric for personal thermal management. , 2021, , .		0