## Muhammad Azam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9493607/publications.pdf Version: 2024-02-01



Μιιμλιμαρ Δ7λΜ

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bandgap engineering of lead-free ternary halide perovskites for photovoltaics and beyond: Recent progress and future prospects. Nano Energy, 2022, 92, 106710.                                                                                     | 16.0 | 27        |
| 2  | Organic Chloride Salt Interfacial Modified Crystallization for Efficient Antimony Selenosulfide Solar<br>Cells. ACS Applied Materials & Interfaces, 2022, 14, 4276-4284.                                                                           | 8.0  | 16        |
| 3  | Low Dark Current and Performance Enhanced Perovskite Photodetector by Graphene Oxide as an<br>Interfacial Layer. Nanomaterials, 2022, 12, 190.                                                                                                     | 4.1  | 6         |
| 4  | Energy band alignment for Cd-free antimony triselenide substrate structured solar cells by<br>Co-sputtering ZnSnO buffer layer. Solar Energy Materials and Solar Cells, 2022, 240, 111721.                                                         | 6.2  | 5         |
| 5  | Quasi-Vertically Oriented Sb <sub>2</sub> Se <sub>3</sub> Thin-Film Solar Cells with Open-Circuit<br>Voltage Exceeding 500 mV Prepared via Close-Space Sublimation and Selenization. ACS Applied<br>Materials & Interfaces, 2021, 13, 46671-46680. | 8.0  | 48        |
| 6  | The route and optimization of charge transport in ternary organic solar cells based on O6T-4F and PC71BM as acceptors. Journal of Power Sources, 2020, 449, 227583.                                                                                | 7.8  | 11        |
| 7  | High Openâ€Circuit Voltage in Fullâ€Inorganic Sb <sub>2</sub> S <sub>3</sub> Solar Cell via Modified<br>Znâ€Doped TiO <sub>2</sub> Electron Transport Layer. Solar Rrl, 2020, 4, 2000551.                                                          | 5.8  | 29        |
| 8  | Realization of Moisture-Resistive Perovskite Films for Highly Efficient Solar Cells Using Molecule<br>Incorporation. ACS Applied Materials & Interfaces, 2020, 12, 39063-39073.                                                                    | 8.0  | 11        |
| 9  | Examining the Interfacial Defect Passivation with Chlorinated Organic Salt for Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000358.                                                                                    | 5.8  | 19        |
| 10 | Triple cation perovskite doped with the small molecule F4TCNQ for highly efficient stable photodetectors. Journal of Materials Chemistry C, 2020, 8, 2880-2887.                                                                                    | 5.5  | 24        |
| 11 | Recent advances in defect passivation of perovskite active layer via additive engineering: a review.<br>Journal Physics D: Applied Physics, 2020, 53, 183002.                                                                                      | 2.8  | 15        |
| 12 | Mode Modulation: Realization of Perovskiteâ€Nanowireâ€Based Plasmonic Lasers Capable of Mode<br>Modulation (Laser Photonics Rev. 13(7)/2019). Laser and Photonics Reviews, 2019, 13, 1970029.                                                      | 8.7  | 0         |
| 13 | Near-band-edge emission enhancement and suppression of the deep levels in Ga-doped ZnO via surface plasmon-exciton coupling without a dielectric spacer. Journal of Materials Science: Materials in Electronics, 2019, 30, 20544-20550.            | 2.2  | 6         |
| 14 | Large photoluminescence enhancement in mechanical-exfoliated one-dimensional ZnO nanorods.<br>Journal of Materials Science: Materials in Electronics, 2019, 30, 5170-5176.                                                                         | 2.2  | 6         |
| 15 | Multiple-engineering controlled growth of tunable-bandgap perovskite nanowires for high performance photodetectors. RSC Advances, 2019, 9, 19772-19779.                                                                                            | 3.6  | 5         |
| 16 | Realization of Perovskiteâ€Nanowireâ€Based Plasmonic Lasers Capable of Mode Modulation. Laser and<br>Photonics Reviews, 2019, 13, 1800306.                                                                                                         | 8.7  | 32        |
| 17 | The Positive Function of Incorporation of Small Molecules into Perovskite Materials for<br>High-Efficient Stable Solar Cells (Solar RRL 3â^2019). Solar Rrl, 2019, 3, 1970034.                                                                     | 5.8  | 1         |
| 18 | The Positive Function of Incorporation of Small Molecules into Perovskite Materials for<br>Highâ€Efficient Stable Solar Cells. Solar Rrl, 2019, 3, 1800327.                                                                                        | 5.8  | 16        |

Muhammad Azam

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A wrinkled structure with broadband and omnidirectional light-trapping abilities for improving the performance of organic solar cells with low defect density. Nanoscale, 2019, 11, 22467-22474.     | 5.6  | 14        |
| 20 | Insights into Charge Separation and Transport in Ternary Polymer Solar Cells. ACS Applied Materials<br>& Interfaces, 2019, 11, 3299-3307.                                                            | 8.0  | 35        |
| 21 | Collection optimization of photo-generated charge carriers for efficient organic solar cells. Journal of Power Sources, 2019, 412, 465-471.                                                          | 7.8  | 14        |
| 22 | Insights on the correlation of precursor solution, morphology of the active layer and performance of the pervoskite solar cells. Journal of Alloys and Compounds, 2018, 731, 375-380.                | 5.5  | 12        |
| 23 | Insight into the Influence of Cl Incorporation into Lead-Halide Perovskite Materials: A Review. Journal of Nanoscience and Nanotechnology, 2018, 18, 7335-7348.                                      | 0.9  | 1         |
| 24 | Highly efficient solar cells based on Cl incorporated tri-cation perovskite materials. Journal of<br>Materials Chemistry A, 2018, 6, 13725-13734.                                                    | 10.3 | 43        |
| 25 | Turning a disadvantage into an advantage: synthesizing high-quality organometallic halide perovskite<br>nanosheet arrays for humidity sensors. Journal of Materials Chemistry C, 2017, 5, 2504-2508. | 5.5  | 74        |
| 26 | Insights into the Influence of Work Functions of Cathodes on Efficiencies of Perovskite Solar Cells.<br>Small, 2017, 13, 1700007.                                                                    | 10.0 | 36        |
| 27 | Efficacious engineering on charge extraction for realizing highly efficient perovskite solar cells.<br>Energy and Environmental Science, 2017, 10, 2570-2578.                                        | 30.8 | 155       |
| 28 | Wrinkled substrate and Indium Tin Oxide-free transparent electrode making organic solar cells thinner in active layer. Journal of Power Sources, 2016, 331, 43-49.                                   | 7.8  | 11        |