Xing Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/949316/publications.pdf

Version: 2024-02-01

106	4,428	34	61
papers	citations	h-index	g-index
143	143	143	3661 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Joint effects of three oceans on the 2020 super meiâ€yu. Atmospheric and Oceanic Science Letters, 2022, 15, 100127.	1.3	15
2	Unraveling human influence on evapotranspiration over East Asian monsoon river basins by using GRACE/GRACE-FO data and land surface models. Journal of Hydrology, 2022, 605, 127349.	5.4	5
3	Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning. Hydrology and Earth System Sciences, 2022, 26, 265-278.	4.9	37
4	A Moderate Mitigation Can Significantly Delay the Emergence of Compound Hot Extremes. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	9
5	Upwind Droughts Enhance Half of the Heatwaves Over North China. Geophysical Research Letters, 2022, 49, .	4.0	16
6	Quantifying the uncertainty of internal variability in future projections of seasonal soil moisture droughts over China. Science of the Total Environment, 2022, 824, 153817.	8.0	13
7	Streamflow droughts aggravated by human activities despite management. Environmental Research Letters, 2022, 17, 044059.	5.2	24
8	Dissolved organic carbon response to hydrological drought characteristics: Based on long-term measurements of headwater streams. Water Research, 2022, 215, 118252.	11.3	22
9	Impact of the false intensification and recovery on the hydrological drought internal propagation. Weather and Climate Extremes, 2022, 36, 100430.	4.1	1
10	Causes and Predictability of the 2021 Spring Southwestern China Severe Drought. Advances in Atmospheric Sciences, 2022, 39, 1766-1776.	4.3	14
11	Climate warming outweighs vegetation greening in intensifying flash droughts over China. Environmental Research Letters, 2022, 17, 054041.	5.2	12
12	Characteristics and circulation patterns for wet and dry compound day-night heat waves in mid-eastern China. Global and Planetary Change, 2022, 213, 103839.	3.5	9
13	The anthropogenic acceleration and intensification of flash drought over the southeastern coastal region of China will continue into the future. Atmospheric and Oceanic Science Letters, 2022, 15, 100262.	1.3	2
14	CMIP6 projects less frequent seasonal soil moisture droughts over China in response to different warming levels. Environmental Research Letters, 2021, 16, 044053.	5.2	31
15	Critical Role of Soil Moisture Memory in Predicting the 2012 Central United States Flash Drought. Frontiers in Earth Science, 2021, 9, .	1.8	18
16	Modeling the Influence of Upstream Land-atmosphere Coupling on the 2017 Persistent Drought over Northeast China. Journal of Climate, 2021, , 1-62.	3.2	4
17	Intensified Impacts of Central Pacific ENSO on the Reversal of December and January Surface Air Temperature Anomaly over China since 1997. Journal of Climate, 2021, 34, 1601-1618.	3.2	23
18	Recent Intensified Influence of the Winter North Pacific Sea Surface Temperature on the Mei-Yu Withdrawal Date. Journal of Climate, 2021, 34, 3869-3887.	3.2	6

#	Article	IF	CITATIONS
19	Global Freshwater Storage Capability across Time Scales in the GRACE Satellite Era. Advances in Atmospheric Sciences, 2021, 38, 905-917.	4.3	5
20	Anthropogenic Speeding Up of South China Flash Droughts as Exemplified by the 2019 Summerâ€Autumn Transition Season. Geophysical Research Letters, 2021, 48, e2020GL091901.	4.0	36
21	An agent-based framework for high-resolution modeling of domestic water use. Resources, Conservation and Recycling, 2021, 169, 105520.	10.8	11
22	Impact of climate and population changes on the increasing exposure to summertime compound hot extremes. Science of the Total Environment, 2021, 772, 145004.	8.0	31
23	The interactions between hydrological drought evolution and precipitation-streamflow relationship. Journal of Hydrology, 2021, 597, 126210.	5.4	33
24	A hydrological perspective on drought risk-assessment in the Yellow River Basin under future anthropogenic activities. Journal of Environmental Management, 2021, 289, 112429.	7.8	30
25	More Persistent Summer Compound Hot Extremes Caused by Global Urbanization. Geophysical Research Letters, 2021, 48, e2021GL093721.	4.0	26
26	Global assessment of future sectoral water scarcity under adaptive inner-basin water allocation measures. Science of the Total Environment, 2021, 783, 146973.	8.0	38
27	Highâ€Resolution Land Surface Modeling of the Effect of Longâ€√erm Urbanization on Hydrothermal Changes Over Beijing Metropolitan Area. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034787.	3.3	7
28	The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. Journal of Hydrology, 2021, 601, 126658.	5.4	73
29	Global warming induces significant changes in the fraction of stored precipitation in the surface soil. Global and Planetary Change, 2021, 205, 103616.	3.5	12
30	Effects of meteorological forcings and land surface model on soil moisture simulation over China. Journal of Hydrology, 2021, 603, 126978.	5.4	26
31	Attribution of 2019 Extreme Spring–Early Summer Hot Drought over Yunnan in Southwestern China. Bulletin of the American Meteorological Society, 2021, 102, S91-S96.	3.3	28
32	Reservoirs regulate the relationship between hydrological drought recovery water and drought characteristics. Journal of Hydrology, 2021, 603, 127127.	5.4	16
33	Crucial role of natural processes in detecting human influence on evapotranspiration by multisource data analysis. Journal of Hydrology, 2020, 580, 124350.	5.4	10
34	Atmospheric Radiative Processes Accelerate Ground Surface Warming over the Southeastern Tibetan Plateau during 1998–2013. Journal of Climate, 2020, 33, 1881-1895.	3.2	12
35	Remote sensing of the impact of flash drought events on terrestrial carbon dynamics over China. Carbon Balance and Management, 2020, 15, 20.	3.2	34
36	Skillful Decadal Prediction of Droughts Over Largeâ€Scale River Basins Across the Globe. Geophysical Research Letters, 2020, 47, e2020GL089738.	4.0	4

#	Article	IF	CITATIONS
37	Unprecedented Europe Heat in June–July 2019: Risk in the Historical and Future Context. Geophysical Research Letters, 2020, 47, e2020GL087809.	4.0	56
38	Anthropogenic Contributions to the 2018 Extreme Flooding over the Upper Yellow River Basin in China. Bulletin of the American Meteorological Society, 2020, 101, S89-S94.	3.3	16
39	Underestimation of the Warming Trend over the Tibetan Plateau during 1998–2013 by Global Land Data Assimilation Systems and Atmospheric Reanalyses. Journal of Meteorological Research, 2020, 34, 88-100.	2.4	9
40	Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels. Hydrology and Earth System Sciences, 2020, 24, 5439-5451.	4.9	25
41	Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations. Hydrology and Earth System Sciences, 2020, 24, 5579-5593.	4.9	55
42	Challenges in predicting and simulating summer rainfall in the eastern China. Climate Dynamics, 2019, 52, 2217-2233.	3.8	39
43	Effect of Teleconnected Land–Atmosphere Coupling on Northeast China Persistent Drought in Spring–Summer of 2017. Journal of Climate, 2019, 32, 7403-7420.	3.2	32
44	Anthropogenic shift towards higher risk of flash drought over China. Nature Communications, 2019, 10, 4661.	12.8	236
45	Influence of Internal Variability and Global Warming on Multidecadal Changes in Regional Drought Severity over the Continental United States. Journal of Hydrometeorology, 2019, 20, 411-429.	1.9	12
46	Benchmark decadal forecast skill for terrestrial water storage estimated by an elasticity framework. Nature Communications, 2019, 10, 1237.	12.8	13
47	More severe hydrological drought events emerge at different warming levels over the Wudinghe watershed in northern China. Hydrology and Earth System Sciences, 2019, 23, 621-635.	4.9	23
48	Attribution of the Persistent Spring–Summer Hot and Dry Extremes over Northeast China in 2017. Bulletin of the American Meteorological Society, 2019, 100, S85-S89.	3.3	26
49	Mechanisms and Early Warning of Drought Disasters: Experimental Drought Meteorology Research over China. Bulletin of the American Meteorological Society, 2019, 100, 673-687.	3.3	14
50	Seasonal Drought Forecasting on the Example of the USA. , 2019, , 1279-1287.		0
51	Anthropogenic Intensification of Southern African Flash Droughts as Exemplified by the 2015/16 Season. Bulletin of the American Meteorological Society, 2018, 99, S86-S90.	3.3	94
52	Superensemble seasonal forecasting of soil moisture by NMME. International Journal of Climatology, 2018, 38, 2565-2574.	3.5	11
53	A First Look at Decadal Hydrological Predictability by Land Surface Ensemble Simulations. Geophysical Research Letters, 2018, 45, 2362-2369.	4.0	13
54	Evaluation of summer drought ensemble prediction over the Yellow River basin. Atmospheric and Oceanic Science Letters, 2018, 11, 314-321.	1.3	7

#	Article	IF	CITATIONS
55	Two Types of Flash Drought and Their Connections with Seasonal Drought. Advances in Atmospheric Sciences, 2018, 35, 1478-1490.	4.3	70
56	Evaluation of Model-Based Soil Moisture Drought Monitoring over Three Key Regions in China. Journal of Applied Meteorology and Climatology, 2018, 57, 1989-2004.	1.5	8
57	Highâ€Resolution Land Surface Modeling of Hydrological Changes Over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 2. Impact of Climate and Land Cover Change. Journal of Advances in Modeling Earth Systems, 2018, 10, 2829-2843.	3.8	31
58	Highâ€Resolution Land Surface Modeling of Hydrological Changes Over the Sanjiangyuan Region in the Eastern Tibetan Plateau: 1. Model Development and Evaluation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2806-2828.	3.8	43
59	Extending seasonal predictability of Yangtze River summer floods. Hydrology and Earth System Sciences, 2018, 22, 4201-4211.	4.9	17
60	Do Climate Change and El Niño Increase Likelihood of Yangtze River Extreme Rainfall?. Bulletin of the American Meteorological Society, 2018, 99, S113-S117.	3.3	22
61	Reconciling the Attribution of Changes in Streamflow Extremes From a Hydroclimate Perspective. Water Resources Research, 2018, 54, 3886-3895.	4.2	25
62	Multiscale Land–Atmosphere Coupling and Its Application in Assessing Subseasonal Forecasts over East Asia. Journal of Hydrometeorology, 2018, 19, 745-760.	1.9	22
63	Water budget closure based on GRACE measurements and reconstructed evapotranspiration using GLDAS and water use data for two large densely-populated mid-latitude basins. Journal of Hydrology, 2017, 547, 585-599.	5.4	59
64	An Overview of Drought Monitoring and Prediction Systems at Regional and Global Scales. Bulletin of the American Meteorological Society, 2017, 98, 1879-1896.	3.3	96
65	Does a Strong El Niño Imply a Higher Predictability of Extreme Drought?. Scientific Reports, 2017, 7, 40741.	3.3	42
66	Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model. Journal of Hydrology, 2017, 551, 116-131.	5.4	63
67	Do Lateral Flows Matter for the Hyperresolution Land Surface Modeling?. Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,077.	3.3	45
68	CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States. Hydrology and Earth System Sciences, 2017, 21, 1477-1490.	4.9	63
69	Understanding and seasonal forecasting of hydrological drought in the Anthropocene. Hydrology and Earth System Sciences, 2017, 21, 5477-5492.	4.9	92
70	Hydroclimatic variability and predictability: a survey of recent research. Hydrology and Earth System Sciences, 2017, 21, 3777-3798.	4.9	28
71	An experimental seasonal hydrological forecasting system over the Yellow River basin – PartÂ1: Understanding the role of initial hydrological conditions. Hydrology and Earth System Sciences, 2016, 20, 2437-2451.	4.9	49
72	An experimental seasonal hydrological forecasting system over the Yellow River basin – PartÂ2: The added value from climate forecast models. Hydrology and Earth System Sciences, 2016, 20, 2453-2466.	4.9	36

#	Article	IF	CITATIONS
73	Hydrological monitoring and seasonal forecasting: Progress and perspectives. Journal of Chinese Geography, 2016, 26, 904-920.	3.9	22
74	Measuring and modeling the impact of a severe drought on terrestrial ecosystem CO ₂ and water fluxes in a subtropical forest. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2576-2587.	3.0	30
75	Increasing flash droughts over China during the recent global warming hiatus. Scientific Reports, 2016, 6, 30571.	3 . 3	179
76	Soil Moisture Estimation Using Active and Passive Remote Sensing Techniques., 2016,, 37-56.		0
77	A review on climateâ€modelâ€based seasonal hydrologic forecasting: physical understanding and system development. Wiley Interdisciplinary Reviews: Water, 2015, 2, 523-536.	6.5	106
78	Seasonal Drought Forecasting on the Example of the USA. , 2015, , 1-9.		1
79	Microwave remote sensing of shortâ€ŧerm droughts during crop growing seasons. Geophysical Research Letters, 2015, 42, 4394-4401.	4.0	142
80	Seasonal drought predictability and forecast skill over China. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8264-8275.	3.3	53
81	Seasonal Forecasting of Global Hydrologic Extremes: System Development and Evaluation over GEWEX Basins. Bulletin of the American Meteorological Society, 2015, 96, 1895-1912.	3.3	85
82	A Framework for Diagnosing Seasonal Prediction through Canonical Event Analysis. Monthly Weather Review, 2015, 143, 2404-2418.	1.4	20
83	Attribution of hydrologic forecast uncertainty within scalable forecast windows. Hydrology and Earth System Sciences, 2014, 18, 775-786.	4.9	23
84	Incorporating Reanalysis-Based Short-Term Forecasts from a Regional Climate Model in an Irrigation Scheduling Optimization Problem. Journal of Water Resources Planning and Management - ASCE, 2014, 140, 699-713.	2.6	25
85	Did a skillful prediction of sea surface temperatures help or hinder forecasting of the 2012 Midwestern US drought?. Environmental Research Letters, 2014, 9, 034005.	5. 2	30
86	A Drought Monitoring and Forecasting System for Sub-Sahara African Water Resources and Food Security. Bulletin of the American Meteorological Society, 2014, 95, 861-882.	3.3	371
87	Hydrologic post-processing of MOPEX streamflow simulations. Journal of Hydrology, 2014, 508, 147-156.	5 . 4	47
88	Integrating weather and climate prediction: Toward seamless hydrologic forecasting. Geophysical Research Letters, 2014, 41, 5891-5896.	4.0	37
89	Incorporating groundwater dynamics and surface/subsurface runoff mechanisms in regional climate modeling over river basins in China. Advances in Atmospheric Sciences, 2013, 30, 983-996.	4.3	6
90	The Influence of Atlantic Tropical Cyclones on Drought over the Eastern United States (1980–2007). Journal of Climate, 2013, 26, 3067-3086.	3.2	58

#	Article	IF	CITATIONS
91	Multimodel seasonal forecasting of global drought onset. Geophysical Research Letters, 2013, 40, 4900-4905.	4.0	130
92	A probabilistic framework for assessing drought recovery. Geophysical Research Letters, 2013, 40, 3637-3642.	4.0	71
93	CFSv2-Based Seasonal Hydroclimatic Forecasts over the Conterminous United States. Journal of Climate, 2013, 26, 4828-4847.	3.2	113
94	Probabilistic Seasonal Forecasting of African Drought by Dynamical Models. Journal of Hydrometeorology, 2013, 14, 1706-1720.	1.9	71
95	Regional Climate–Weather Research and Forecasting Model. Bulletin of the American Meteorological Society, 2012, 93, 1363-1387.	3.3	129
96	WRF ensemble downscaling seasonal forecasts of China winter precipitation during 1982–2008. Climate Dynamics, 2012, 39, 2041-2058.	3.8	60
97	On the clustering of climate models in ensemble seasonal forecasting. Geophysical Research Letters, 2012, 39, .	4.0	28
98	Downscaling precipitation or biasâ€correcting streamflow? Some implications for coupled general circulation model (CGCM)â€based ensemble seasonal hydrologic forecast. Water Resources Research, 2012, 48, .	4.2	64
99	Improving cold season precipitation prediction by the nested CWRF-CFS system. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	32
100	A first look at Climate Forecast System version 2 (CFSv2) for hydrological seasonal prediction. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	152
101	Prediction of water table depths under soil water-groundwater interaction and stream water conveyance. Science China Earth Sciences, 2011, 54, 420-430.	5.2	12
102	Evaluation of a Conjunctive Surface–Subsurface Process Model (CSSP) over the Contiguous United States at Regional–Local Scales. Journal of Hydrometeorology, 2011, 12, 579-599.	1.9	43
103	Prediction of water table under stream–aquifer interactions over an arid region. Hydrological Processes, 2010, 24, 160-169.	2.6	14
104	Sensitivity of regionalized transfer-function noise models to the input and parameter transfer method / Sensibilité de modà les de type fonction de transfert bruit régionalisée (FTBR) aux données d'entrée et aux méthodes de transfert de paramà tres. Hydrological Sciences Journal, 2009, 54, 639-651.	2.6	4
105	Spatiotemporal prediction of shallow water table depths in continental China. Water Resources Research, 2008, 44, .	4.2	19
106	Effects of water table dynamics on regional climate: A case study over east Asian monsoon area. Journal of Geophysical Research, 2008, 113, .	3.3	57