Philippe Dagaut

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9491478/publications.pdf

Version: 2024-02-01

274 papers

13,961 citations

65 h-index 99 g-index

286 all docs

286 docs citations

times ranked

286

4553 citing authors

#	Article	IF	CITATIONS
1	The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Progress in Energy and Combustion Science, 2006, 32, 48-92.	31.2	506
2	The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science, 2008, 34, 1-46.	31.2	305
3	An experimental and kinetic modeling study of n-butanol combustion. Combustion and Flame, 2009, 156, 852-864.	5.2	279
4	On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Physical Chemistry Chemical Physics, 2002, 4, 2079-2094.	2.8	236
5	A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation. Combustion and Flame, 2016, 165, 125-136.	5.2	232
6	A wide-ranging kinetic modeling study of methyl butanoate combustion. Proceedings of the Combustion Institute, 2007, 31 , $305-311$.	3.9	221
7	A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor. Proceedings of the Combustion Institute, 2009, 32, 229-237.	3.9	201
8	The combustion of kerosene: Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels. Fuel, 2006, 85, 944-956.	6.4	194
9	High Pressure Oxidation of Liquid Fuels From Low to High Temperature. 1. n-Heptane and iso-Octane Combustion Science and Technology, 1993, 95, 233-260.	2.3	190
10	Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation. Combustion and Flame, 2015, 162, 3-21.	5.2	177
11	Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. Combustion and Flame, 2011, 158, 705-725.	5. 2	158
12	Experimental study of the oxidation of n-heptane in a jet stirred reactor from low to high temperature and pressures up to 40 atm. Combustion and Flame, 1995, 101, 132-140.	5.2	153
13	Oxidation, ignition and combustion of toluene: Experimental and detailed chemical kinetic modelingElectronic supplementary information (ESI) available: Arrhenius parameters for reactions. See http://www.rsc.org/suppdata/cp/b1/b110282f/. Physical Chemistry Chemical Physics, 2002, 4, 1846-1854.	2.8	153
14	Rapeseed oil methyl ester oxidation over extended ranges of pressure, temperature, and equivalence ratio: Experimental and modeling kinetic study. Proceedings of the Combustion Institute, 2007, 31, 2955-2961.	3.9	152
15	Effects of Dilution on Laminar Burning Velocity of Premixed Methane/Air Flames. Energy & Ener	5.1	151
16	A comparison of saturated and unsaturated C4 fatty acid methyl esters in an opposed flow diffusion flame and a jet stirred reactor. Proceedings of the Combustion Institute, 2007, 31, 1015-1022.	3.9	145
17	Experimental and chemical kinetic modeling study of small methyl esters oxidation: Methyl (E)-2-butenoate and methyl butanoate. Combustion and Flame, 2008, 155, 635-650.	5.2	143
18	A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation. Combustion and Flame, 2013, 160, 2291-2318.	5.2	143

#	Article	IF	Citations
19	Detection and Identification of the Keto-Hydroperoxide (HOOCH ₂ OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A, 2015, 119, 7361-7374.	2.5	143
20	The oxidation and ignition of dimethylether from low to high temperature (500–1600 K): Experiments and kinetic modeling. Proceedings of the Combustion Institute, 1998, 27, 361-369.	0.3	141
21	HCCI combustion: Effect of NO in EGR. Proceedings of the Combustion Institute, 2007, 31, 2879-2886.	3.9	141
22	An experimental and kinetic modeling study of n -hexane oxidation. Combustion and Flame, 2015, 162, 4194-4207.	5.2	124
23	Experimental study and detailed kinetic modeling of the effect of exhaust gas on fuel combustion: mutual sensitization of the oxidation of nitric oxide and methane over extended temperature and pressure ranges. Combustion and Flame, 2005, 140, 161-171.	5.2	117
24	Unraveling the structure and chemical mechanisms of highly oxygenated intermediates in oxidation of organic compounds. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13102-13107.	7.1	117
25	Methane Oxidation: Experimental and Kinetic Modeling Study. Combustion Science and Technology, 1991, 77, 127-148.	2.3	115
26	Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel. Combustion and Flame, 2014, 161, 835-847.	5.2	111
27	Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. II. A comprehensive kinetic modeling study. Combustion and Flame, 2015, 162, 22-40.	5.2	108
28	Kerosene combustion at pressures up to 40 atm: Experimental study and detailed chemical kinetic modeling. Proceedings of the Combustion Institute, 1994, 25, 919-926.	0.3	107
29	Experimental and Detailed Modeling Study of the Effect of Water Vapor on the Kinetics of Combustion of Hydrogen and Natural Gas, Impact on NO _{<i>x</i>>} . Energy & Samp; Fuels, 2009, 23, 725-734.	5.1	106
30	Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/n-heptane and ethanol/n-heptane blends. Proceedings of the Combustion Institute, 2011, 33, 3007-3014.	3.9	106
31	The gas phase reactions of hydroxyl radicals with a series of esters over the temperature range 240-440 K. International Journal of Chemical Kinetics, 1988, 20, 177-186.	1.6	105
32	Chemical kinetic study of dimethylether oxidation in a jet stirred reactor from 1 to 10 ATM: Experiments and kinetic modeling. Proceedings of the Combustion Institute, 1996, 26, 627-632.	0.3	105
33	Oxidation kinetics of butanol–gasoline surrogate mixtures in a jet-stirred reactor: Experimental and modeling study. Fuel, 2008, 87, 3313-3321.	6.4	105
34	Quantification of the Keto-Hydroperoxide (HOOCH ₂ OCHO) and Other Elusive Intermediates during Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A, 2016, 120, 7890-7901.	2.5	104
35	Experimental and detailed kinetic modeling study of 1-pentanol oxidation in a JSR and combustion in a bomb. Proceedings of the Combustion Institute, 2011, 33, 367-374.	3.9	103
36	Acetylene Oxidation in a JSR From 1 to 10 Atm and Comprehensive Kinetic Modeling. Combustion Science and Technology, 1994, 102, 21-55.	2.3	102

#	Article	lF	CITATIONS
37	Influence of ozone on the combustion of n-heptane in a HCCI engine. Proceedings of the Combustion Institute, 2013, 34, 3005-3012.	3.9	98
38	The gas phase reactions of hydroxyl radicals with a series of aliphatic ethers over the temperature range 240-440 K. International Journal of Chemical Kinetics, 1988, 20, 41-49.	1.6	97
39	Experimental and Detailed Kinetic Modeling Study of the Effect of Ozone on the Combustion of Methane. Energy &	5.1	96
40	A comprehensive experimental and modeling study of iso-pentanol combustion. Combustion and Flame, 2013, 160, 2712-2728.	5.2	95
41	Experimental and Kinetic Modeling Study of the Oxidation of Methyl Hexanoate. Energy & Experimental and Kinetic Modeling Study of the Oxidation of Methyl Hexanoate. Energy & Experimental 2008, 22, 1469-1479.	5.1	94
42	An experimental and modeling study of n -octanol combustion. Proceedings of the Combustion Institute, 2015, 35, 419-427.	3.9	94
43	Additional chain-branching pathways in the low-temperature oxidation of branched alkanes. Combustion and Flame, 2016, 164, 386-396.	5.2	94
44	An experimental and modelling study of n-pentane oxidation in two jet-stirred reactors: The importance of pressure-dependent kinetics and new reaction pathways. Proceedings of the Combustion Institute, 2017, 36, 441-448.	3.9	92
45	Experimental and kinetic modeling study of the effect of NO and SO2 on the oxidation of CO?H2 mixtures. International Journal of Chemical Kinetics, 2003, 35, 564-575.	1.6	90
46	Experimental and Modeling Study of the Kinetics of Oxidation of Ethanolâ ² Gasoline Surrogate Mixtures (E85 Surrogate) in a Jet-Stirred Reactor. Energy & En	5.1	90
47	Kinetics of ethane oxidation. International Journal of Chemical Kinetics, 1991, 23, 437-455.	1.6	89
48	A comprehensive combustion chemistry study of 2,5-dimethylhexane. Combustion and Flame, 2014, 161, 1444-1459.	5.2	88
49	Ethylene pyrolysis and oxidation: A kinetic modeling study. International Journal of Chemical Kinetics, 1990, 22, 641-664.	1.6	87
50	The oxidation of n-Hexadecane: experimental and detailed kinetic modeling. Combustion and Flame, 2001, 125, 1128-1137.	5.2	87
51	Experimental and Modeling Study of the Kinetics of Oxidation of Butanolâ ⁻ ' <i>n-</i> Heptane Mixtures in a Jet-stirred Reactor. Energy & Samp; Fuels, 2009, 23, 3527-3535.	5.1	86
52	Experimental and numerical analysis of nitric oxide effect on the ignition of iso-octane in a single cylinder HCCI engine. Combustion and Flame, 2013, 160, 1476-1483.	5.2	86
53	Rate constants for the gas phase reactions of OH with C5 through C7 aliphatic alcohols and ethers: Predicted and experimental values. International Journal of Chemical Kinetics, 1988, 20, 541-547.	1.6	84
54	Oxidation of dimethoxymethane in a jet-stirred reactor. Combustion and Flame, 2001, 125, 1106-1117.	5.2	77

#	Article	IF	CITATIONS
55	Experimental and Detailed Kinetic Modeling Study of Isoamyl Alcohol (Isopentanol) Oxidation in a Jet-Stirred Reactor at Elevated Pressure. Energy & Energy & 2011, 25, 4986-4998.	5.1	76
56	Investigation of iso-octane combustion in a homogeneous charge compression ignition engine seeded by ozone, nitric oxide and nitrogen dioxide. Proceedings of the Combustion Institute, 2015, 35, 3125-3132.	3.9	76
57	Nitric oxide interactions with hydrocarbon oxidation in a jet-stirred reactor at 10 atm. Combustion and Flame, 2006, 145, 512-520.	5.2	75
58	Experimental and modelling study of gasoline surrogate mixtures oxidation in jet stirred reactor and shock tube. Proceedings of the Combustion Institute, 2007, 31, 385-391.	3.9	73
59	Chemical Kinetic Study of the Effect of a Biofuel Additive on Jet-A1 Combustion. Journal of Physical Chemistry A, 2007, 111, 3992-4000.	2.5	72
60	Gas-phase reactions of hydroxyl radicals with the fuel additives methyl tert-butyl ether and tert-butyl alcohol over the temperature range 240-440 K. Environmental Science &	10.0	71
61	EFFECTS OF AIR CONTAMINATION ON THE COMBUSTION OF HYDROGEN—EFFECT OF NO AND NO2 ADDITION ON HYDROGEN IGNITION AND OXIDATION KINETICS. Combustion Science and Technology, 2006, 178, 1999-2024.	2.3	71
62	High pressure effects on the mutual sensitization of the oxidation of NO and CH4–C2H6 blends. Physical Chemistry Chemical Physics, 2007, 9, 4230.	2.8	71
63	Experimental and detailed kinetic modeling study of the high pressure oxidation of methanol sensitized by nitric oxide and nitrogen dioxide. Proceedings of the Combustion Institute, 2007, 31, 411-418.	3.9	71
64	Experimental and Modeling Study of the Oxidation Kinetics of <i>n</i> -Undecane and <i>n</i> -Dodecane in a Jet-Stirred Reactor. Energy & Energy & 2012, 26, 4253-4268.	5.1	70
65	Experiments and Kinetic Modeling Study of NO-Reburning by Gases from Biomass Pyrolysis in a JSR. Energy & Energ	5.1	69
66	Experimental and modeling study of the oxidation of natural gas in a premixed flame, shock tube, and jet-stirred reactor. Combustion and Flame, 2004, 137, 109-128.	5.2	69
67	Experimental kinetic study of the oxidation of -xylene in a JSR and comprehensive detailed chemical kinetic modeling. Combustion and Flame, 2005, 141, 281-297.	5.2	68
68	n-Heptane cool flame chemistry: Unraveling intermediate species measured in a stirred reactor and motored engine. Combustion and Flame, 2018, 187, 199-216.	5. 2	68
69	Experimental and modeling study of the kinetics of oxidation of ethanol-n-heptane mixtures in a jet-stirred reactor. Fuel, 2010, 89, 280-286.	6.4	67
70	A kinetic investigation of the gas-phase reactions of hydroxyl radicals with cyclic ketones and diones: mechanistic insights. The Journal of Physical Chemistry, 1988, 92, 4375-4377.	2.9	65
71	Chemical kinetic modeling of the supercritical-water oxidation of methanol. Journal of Supercritical Fluids, 1996, 9, 33-42.	3.2	65
72	The oxidation of a diesel fuel at 1–10atm: Experimental study in a JSR and detailed chemical kinetic modeling. Proceedings of the Combustion Institute, 2007, 31, 2939-2946.	3.9	65

#	Article	IF	CITATIONS
73	A comprehensive experimental and kinetic modeling study of ethylbenzene combustion. Combustion and Flame, 2016, 166, 255-265.	5.2	65
74	Experimental and detailed kinetic modeling study of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges. Proceedings of the Combustion Institute, 2005, 30, 2631-2638.	3.9	64
75	A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation. Combustion and Flame, 2009, 156, 250-260.	5.2	64
76	Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals towards saturated organic compounds. The Journal of Physical Chemistry, 1988, 92, 5024-5028.	2.9	63
77	Kinetic modeling of propane oxidation and pyrolysis. International Journal of Chemical Kinetics, 1992, 24, 813-837.	1.6	63
78	The Low Temperature Oxidation of DME and Mutual Sensitization of the Oxidation of DME and Nitric Oxide: Experimental and Detailed Kinetic Modeling. Combustion Science and Technology, 2001, 165, 61-84.	2.3	62
79	Detailed Kinetic Mechanism for the Oxidation of Vegetable Oil Methyl Esters: New Evidence from Methyl Heptanoate. Energy & Energy	5.1	62
80	Modeling the Oxidation of Mixtures of Primary Reference Automobile Fuels. Energy & E	5.1	61
81	Oxidation of H2/CO2 mixtures and effect of hydrogen initial concentration on the combustion of CH4 and CH4/CO2 mixtures: Experiments and modeling. Proceedings of the Combustion Institute, 2009, 32, 427-435.	3.9	60
82	Homogeneous Charge Compression Ignition Combustion of Primary Reference Fuels Influenced by Ozone Addition. Energy & Ene	5.1	60
83	Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion. Applied Energy, 2015, 160, 566-580.	10.1	60
84	Experimental and Detailed Kinetic Modeling of the Oxidation of Methane and Methane/Syngas Mixtures and Effect of Carbon Dioxide Addition. Combustion Science and Technology, 2008, 180, 2046-2091.	2.3	59
85	Combustion in micro-channels with a controlled temperature gradient. Experimental Thermal and Fluid Science, 2016, 73, 79-86.	2.7	59
86	Kinetics of Oxidation of Commercial and Surrogate Diesel Fuels in a Jet-Stirred Reactor: Experimental and Modeling Studies. Energy & Energ	5.1	58
87	A chemical kinetic study of the oxidation of dibutyl-ether in a jet-stirred reactor. Combustion and Flame, 2017, 185, 4-15.	5.2	58
88	Kinetic measurements of the gas-phase reactions of hydroxyl radicals with hydroxy ethers, hydroxy ketones, and keto ethers. The Journal of Physical Chemistry, 1989, 93, 7838-7840.	2.9	57
89	Kinetics of 1-hexene oxidation in a JSR and a shock tube: Experimental and modeling study. Combustion and Flame, 2006, 147, 67-78.	5.2	55
90	Experimental and kinetic modeling of methyl octanoate oxidation in an opposed-flow diffusion flame and a jet-stirred reactor. Proceedings of the Combustion Institute, 2011, 33, 1037-1043.	3.9	55

#	Article	IF	CITATIONS
91	Experimental and Detailed Kinetic Modeling Study of Ethyl Pentanoate (Ethyl Valerate) Oxidation in a Jet Stirred Reactor and Laminar Burning Velocities in a Spherical Combustion Chamber. Energy & Spherical Chamber. Energy &	5.1	55
92	Kinetics of Oxidation of 2-Butanol and Isobutanol in a Jet-Stirred Reactor: Experimental Study and Modeling Investigation. Energy & Energy	5.1	54
93	Hydrogen-enriched natural gas blend oxidation under high-pressure conditions: Experimental and detailed chemical kinetic modeling. International Journal of Hydrogen Energy, 2006, 31, 505-515.	7.1	53
94	Experimental and Detailed Kinetic Modeling Study of 1-Hexanol Oxidation in a Pressurized Jet-Stirred Reactor and a Combustion Bomb. Energy & Samp; Fuels, 2010, 24, 5859-5875.	5.1	52
95	A Comparative Study of the Kinetics of Benzene Formation from Unsaturated C2 to C4 Hydrocarbons. Combustion and Flame, 1998, 113, 620-623.	5.2	51
96	Oxidation of Natural Gas, Natural Gas/Syngas Mixtures, and Effect of Burnt Gas Recirculation: Experimental and Detailed Kinetic Modeling. Journal of Engineering for Gas Turbines and Power, 2008, 130, .	1.1	51
97	Occurrence of NO-reburning in MILD combustion evidenced via chemical kinetic modeling. Fuel, 2006, 85, 2469-2478.	6.4	50
98	Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: Experimental and Chemical Kinetic Modeling Study. Energy & Samp; Fuels, 2012, 26, 6070-6079.	5.1	50
99	Experimental and semi-detailed kinetic modeling study of decalin oxidation and pyrolysis over a wide range of conditions. Proceedings of the Combustion Institute, 2013, 34, 289-296.	3.9	50
100	Exploration of the oxidation chemistry of dimethoxymethane: Jet-stirred reactor experiments and kinetic modeling. Combustion and Flame, 2018, 193, 491-501.	5.2	50
101	Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole. Combustion and Flame, 2018, 189, 325-336.	5.2	49
102	The gas phase reactions of hydroxyl radicals with a series of carboxylic acids over the temperature range 240-440 K. International Journal of Chemical Kinetics, 1988, 20, 331-338.	1.6	48
103	New insights into the peculiar behavior of laminar burning velocities of hydrogen–air flames according to pressure and equivalence ratio. Combustion and Flame, 2014, 161, 2235-2241.	5.2	48
104	EXPERIMENTAL STUDY AND DETAILED KINETIC MODELING OF THE MUTUAL SENSITIZATION OF THE OXIDATION OF NITRIC OXIDE, ETHYLENE, AND ETHANE. Combustion Science and Technology, 2005, 177, 1767-1791.	2.3	47
105	Experimental and kinetic modeling study of styrene combustion. Combustion and Flame, 2015, 162, 1868-1883.	5.2	47
106	The reduction of NO by ethylene in a jet-stirred reactor at 1 atm: experimental and kinetic modelling. Combustion and Flame, 1999, 119, 494-504.	5.2	46
107	CFD simulations using the TDAC method to model iso-octane combustion for a large range of ozone seeding and temperature conditions in a single cylinder HCCI engine. Fuel, 2014, 137, 179-184.	6.4	46
108	Experimental and kinetic modeling study of the effect of SO2 on the reduction of NO by ammonia. Proceedings of the Combustion Institute, 2005, 30, 1211-1218.	3.9	45

#	Article	IF	CITATIONS
109	VAPORIZATION AND OXIDATION OF LIQUID FUEL DROPLETS AT HIGH TEMPERATURE AND HIGH PRESSURE: APPLICATION TON-ALKANES AND VEGETABLE OIL METHYL ESTERS. Combustion Science and Technology, 2004, 176, 499-529.	2.3	43
110	Laminar Burning Velocities of C ₄ –C ₇ Ethyl Esters in a Spherical Combustion Chamber: Experimental and Detailed Kinetic Modeling. Energy & Ene	5.1	43
111	An experimental chemical kinetic study of the oxidation of diethyl ether in a jet-stirred reactor and comprehensive modeling. Combustion and Flame, 2018, 193, 453-462.	5.2	43
112	A Kinetic Modeling Study of Propene Oxidation in JSR and Flame. Combustion Science and Technology, 1992, 83, 167-185.	2.3	42
113	Oxidation of commercial and surrogate bio-Diesel fuels (B30) in a jet-stirred reactor at elevated pressure: Experimental and modeling kinetic study. Proceedings of the Combustion Institute, 2011, 33, 375-382.	3.9	42
114	Oscillating flames in micro-combustion. Combustion and Flame, 2016, 167, 392-394.	5.2	42
115	OXIDATION OF 1-METHYLNAPHTHALENE AT 1–13 ATM: EXPERIMENTAL STUDY IN A JSR AND DETAILED CHEMICAL KINETIC MODELING. Combustion Science and Technology, 2007, 179, 1261-1285.	2.3	41
116	Jet-stirred reactor and flame studies of propanal oxidation. Proceedings of the Combustion Institute, 2013, 34, 599-606.	3.9	41
117	Oxidation of oxygenated octane improvers: MTBE, ETBE, DIPE, and TAME. Proceedings of the Combustion Institute, 1998, 27, 353-360.	0.3	40
118	Mutual Sensitization of the Oxidation of Nitric Oxide and Simple Fuels Over an Extended Temperature Range: Experimental and Detailed Kinetic Modeling. Combustion Science and Technology, 1999, 148, 27-57.	2.3	40
119	Experimental and kinetic modeling of nitric oxide reduction by acetylene in an atmospheric pressure jet-stirred reactor. Fuel, 1999, 78, 1245-1252.	6.4	40
120	Oxidation of Ethylene and Propene in the Presence of CO ₂ and H ₂ O: Experimental and Detailed Kinetic Modeling Study. Combustion Science and Technology, 2010, 182, 333-349.	2.3	40
121	Experimental and modeling study of the oxidation of n- and iso-butanal. Combustion and Flame, 2013, 160, 1609-1626.	5.2	40
122	A comprehensive experimental and kinetic modeling study of n-propylbenzene combustion. Combustion and Flame, 2017, 186, 178-192.	5.2	40
123	An experimental study in a jet-stirred reactor and a comprehensive kinetic mechanism for the oxidation of methyl ethyl ketone. Proceedings of the Combustion Institute, 2017, 36, 459-467.	3.9	40
124	Experimental and kinetic modeling of the reduction of NO by propene at 1 atm. Combustion and Flame, 2000, 121, 651-661.	5.2	39
125	OXIDATION OF m-XYLENE IN A JSR: EXPERIMENTAL STUDY AND DETAILED CHEMICAL KINETIC MODELING. Combustion Science and Technology, 2007, 179, 813-844.	2.3	39
126	Experimental and Modeling Study of the Kinetics of Oxidation of Simple Biodieselâ^Biobutanol Surrogates: Methyl Octanoateâ^Butanol Mixtures. Energy & Samp; Fuels, 2010, 24, 3906-3916.	5.1	39

#	Article	IF	CITATIONS
127	The oxidation of n-butylbenzene: Experimental study in a JSR at 10atm and detailed chemical kinetic modeling. Proceedings of the Combustion Institute, 2011, 33, 209-216.	3.9	39
128	Laminar burning velocities of premixed nitromethane/air flames: An experimental and kinetic modeling study. Proceedings of the Combustion Institute, 2015, 35, 703-710.	3.9	39
129	Natural gas and blends oxidation and ignition: Experiments and modeling. Proceedings of the Combustion Institute, 1994, 25, 1563-1569.	0.3	38
130	Chemical Kinetic Study of the Oxidation of Isocetane (2,2,4,4,6,8,8-Heptamethylnonane) in a Jet-stirred Reactor: Experimental and Modeling. Energy & Samp; Fuels, 2009, 23, 2389-2395.	5.1	38
131	Experimental and kinetic modeling study of trans-methyl-3-hexenoate oxidation in JSR and the role of CC double bond. Combustion and Flame, 2014, 161, 818-825.	5.2	38
132	Exploring gasoline oxidation chemistry in jet stirred reactors. Fuel, 2019, 236, 1282-1292.	6.4	38
133	Kinetics of Oxidation of a Synthetic Jet Fuel in a Jet-Stirred Reactor: Experimental and Modeling Study. Energy & Samp; Fuels, 2010, 24, 4904-4911.	5.1	37
134	Experimental and Modeling Study of the Oxidation of 1-Butene and <i>cis</i> -2-Butene in a Jet-Stirred Reactor and a Combustion Vessel. Energy & Study	5.1	37
135	NO reduction capacity of four major solid fuels in reburning conditions – Experiments and modeling. Fuel, 2008, 87, 274-289.	6.4	36
136	New insights into the low-temperature oxidation of 2-methylhexane. Proceedings of the Combustion Institute, 2017, 36, 373-382.	3.9	36
137	Flash photolysis resonance fluorescence investigation of the gas-phase reactions of hydroxyl radicals with cyclic ethers. The Journal of Physical Chemistry, 1990, 94, 1881-1883.	2.9	35
138	2-Propanol Oxidation in a Pressurized Jet-Stirred Reactor (JSR) and Combustion Bomb: Experimental and Detailed Kinetic Modeling Study. Energy & Ene	5.1	35
139	Experimental and Detailed Kinetic Modeling Study of the Oxidation of 1-Propanol in a Pressurized Jet-Stirred Reactor (JSR) and a Combustion Bomb. Energy & Energy & 2011, 25, 2013-2021.	5.1	35
140	An experimental and modeling study of diethyl carbonate oxidation. Combustion and Flame, 2015, 162, 1395-1405.	5.2	34
141	Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling. Proceedings of the Combustion Institute, 2017, 36, 469-477.	3.9	34
142	Kinetics of 1,2-Dimethylbenzene Oxidation and Ignition: Experimental and Detailed Chemical Kinetic Modeling. Combustion Science and Technology, 2008, 180, 1748-1771.	2.3	32
143	The ignition and oxidation of allene and propyne: Experiments and kinetic modeling. Proceedings of the Combustion Institute, 1996, 26, 613-620.	0.3	31
144	Influence of EGR compounds on the oxidation of an HCCI-diesel surrogate. Proceedings of the Combustion Institute, 2009, 32, 2851-2859.	3.9	31

#	Article	IF	Citations
145	Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor. Combustion and Flame, 2018, 192, 120-129.	5.2	31
146	The oxidation of ethylene oxide in a jet-stirred reactor and its ignition in shock waves. Combustion and Flame, 1996, 106, 62-68.	5.2	30
147	Modeling of the Oxidation of Primary Reference Fuel in the Presence of Oxygenated Octane Improvers: Ethyl Tert-Butyl Ether and Ethanol. Energy & Ethyl Tert-Butyl Ethyl	5.1	30
148	An experimental and modeling study of 2-methyl-1-butanol oxidation in a jet-stirred reactor. Combustion and Flame, 2014, 161, 3003-3013.	5.2	29
149	Experimental and kinetic modeling study of trans-2-butene oxidation in a jet-stirred reactor and a combustion bomb. Proceedings of the Combustion Institute, 2015, 35, 317-324.	3.9	29
150	Kinetics of Jet Fuel Combustion Over Extended Conditions: Experimental and Modeling. Journal of Engineering for Gas Turbines and Power, 2007, 129, 394-403.	1.1	28
151	Experimental and Kinetic Modeling Study of 3-Methylheptane in a Jet-Stirred Reactor. Energy & Energy & Fuels, 2012, 26, 4680-4689.	5.1	28
152	Autoignition of surrogate biodiesel fuel (B30) at high pressures: Experimental and modeling kinetic study. Combustion and Flame, 2012, 159, 996-1008.	5.2	28
153	On the Oxidation of Ammonia and Mutual Sensitization of the Oxidation of No and Ammonia: Experimental and Kinetic Modeling. Combustion Science and Technology, 2022, 194, 117-129.	2.3	28
154	An experimental and kinetic modeling study on the oxidation of 1,3-dioxolane. Proceedings of the Combustion Institute, 2021, 38, 543-553.	3.9	28
155	The temperature dependence of the rate constant for the hydroperoxy + methylperoxy gas-phase reaction. The Journal of Physical Chemistry, 1988, 92, 3833-3836.	2.9	27
156	Propyne Oxidation: A Kinetic Modeling Study. Combustion Science and Technology, 1990, 71, 111-128.	2.3	27
157	Experimental and kinetic modeling study of the reduction of NO by hydrocarbons and interactions with SO2 in a JSR at latmâ<. Fuel, 2003, 82, 1033-1040.	6.4	27
158	Combustion and Emissions Characteristics of Valeric Biofuels in a Compression Ignition Engine. Journal of Energy Engineering - ASCE, 2014, 140, .	1.9	27
159	Quantitative Measurements of HO ₂ and Other Products of <1>n 1 -Butane Oxidation (H ₂ O, cH ₂ O, and) Tj ETQq1 1 0.784314 rgBT /Overl with Sampling Nozzle and Cavity Ring-Down Spectroscopy (cw-CRDS). Journal of the American	ock 10 Tf ! 13.7	50 187 Td (C 27
160	Chemical Society, 2014, 136, 16689-16694. Jet-stirred reactor oxidation of alkane-rich FACE gasoline fuels. Proceedings of the Combustion Institute, 2017, 36, 517-524.	3.9	27
161	Flash photolysis kinetic absorption spectroscopy study of the gas-phase reaction hydroperoxy radical + ethylperoxy radical over the temperature range 228-380 K. The Journal of Physical Chemistry, 1988, 92, 3836-3839.	2.9	26
162	Chemical Kinetic Study of the Oxidation of a Biodieselâ^Bioethanol Surrogate Fuel: Methyl Octanoateâ^Ethanol Mixtures. Journal of Physical Chemistry A, 2010, 114, 3896-3908.	2.5	26

#	Article	IF	Citations
163	Mutual Sensitization of the Oxidation of Nitric Oxide and a Natural Gas Blend in a JSR at Elevated Pressure: Experimental and Detailed Kinetic Modeling Studyâ€. Journal of Physical Chemistry A, 2006, 110, 6608-6616.	2.5	25
164	Oxidation of di-n-butyl ether: Experimental characterization of low-temperature products in JSR and RCM. Combustion and Flame, 2020, 222, 133-144.	5.2	25
165	Measurements of the gas phase UV absorption spectrum of C2H5O2· radicals and of the temperature dependence of the rate constant for their self-reaction. Journal of Photochemistry and Photobiology A: Chemistry, 1988, 42, 173-185.	3.9	24
166	A flash photolysis resonance fluorescence investigation of the reactions of Oxygen O(3P) atoms with aliphatic ethers and diethers in the gas phase. International Journal of Chemical Kinetics, 1990, 22, 711-717.	1.6	24
167	Thermodynamic Data for the Modeling of the Thermal Decomposition of Biodiesel. 1. Saturated and Monounsaturated FAMEs. Journal of Physical Chemistry A, 2010, 114, 3788-3795.	2.5	24
168	Experimental Study of Tetralin Oxidation and Kinetic Modeling of Its Pyrolysis and Oxidation. Energy & Experimental Study of Tetralin Oxidation and Kinetic Modeling of Its Pyrolysis and Oxidation. Energy & Experimental Study of Tetralin Oxidation and Kinetic Modeling of Its Pyrolysis and Oxidation.	5.1	24
169	Kinetic measurements of the gas phase HO2+CH3O2 cross-disproportionation reaction at 298 K. Chemical Physics Letters, 1987, 139, 513-518.	2.6	23
170	Kinetics of oxidation of cyclohexanone in a jet-stirred reactor: Experimental and modeling. Proceedings of the Combustion Institute, 2015, 35, 507-514.	3.9	23
171	Quantification of HO2 and other products of dimethyl ether oxidation (H2O2, H2O, and CH2O) in a jet-stirred reactor at elevated temperatures by low-pressure sampling and continuous-wave cavity ring-down spectroscopy. Fuel, 2015, 158, 248-252.	6.4	23
172	The gas phase reactivity of aliphatic polyethers towards OH radicals: Measurements and predictions. International Journal of Chemical Kinetics, 1989, 21, 1173-1180.	1.6	22
173	Experimental and kinetic modeling of the reduction of NO by isobutane in a Jsr at 1 atm. International Journal of Chemical Kinetics, 2000, 32, 365-377.	1.6	22
174	Reduction of NO byn-Butane in a JSR:  Experiments and Kinetic Modelingâ€. Energy & Company Fuels, 2000, 14, 712-719.	5.1	22
175	Screening Method for Fuels in Homogeneous Charge Compression Ignition Engines: Application to Valeric Biofuels. Energy & Damp; Fuels, 2017, 31, 607-614.	5.1	22
176	Experimental and Detailed Kinetic Modeling Study of Cyclopentanone Oxidation in a Jet-Stirred Reactor at 1 and 10 atm. Energy & Samp; Fuels, 2017, 31, 2144-2155.	5.1	22
177	Oxidation of di-n-propyl ether: Characterization of low-temperature products. Proceedings of the Combustion Institute, 2021, 38, 337-344.	3.9	22
178	Experimental characterization of n-heptane low-temperature oxidation products including keto-hydroperoxides and highly oxygenated organic molecules (HOMs). Combustion and Flame, 2021, 224, 83-93.	5.2	22
179	The UV absorption spectra and kinetics of the self reactions of CH2ClO2 and CH2FO2 radicals in the gas phase. International Journal of Chemical Kinetics, 1988, 20, 815-826.	1.6	21
180	The Oxidation of HCN and Reactions with Nitric Oxide: Experimental and Detailed Kinetic Modeling. Combustion Science and Technology, 2000, 155, 105-127.	2.3	21

#	Article	IF	Citations
181	New insights into propanal oxidation at low temperatures: An experimental and kinetic modeling study. Proceedings of the Combustion Institute, 2019, 37, 565-573.	3.9	21
182	On the implications of nitromethane $\hat{a} \in \text{``NO'}$ NO chemistry interactions for combustion processes. Fuel, 2021, 289, 119861.	6.4	21
183	Exploring pyrolysis and oxidation chemistry of o-xylene at various pressures with special concerns on PAH formation. Combustion and Flame, 2021, 228, 351-363.	5.2	21
184	NO-Reduction by Ethane in a JSR at Atmospheric Pressure: Experimental and Kinetic Modeling. Combustion Science and Technology, 2000, 150, 181-203.	2.3	20
185	Oxidation kinetics of n-nonane: Measurements and modeling of ignition delay times and product concentrations. Proceedings of the Combustion Institute, 2011, 33, 175-183.	3.9	20
186	Quantities of Interest in Jet Stirred Reactor Oxidation of a High-Octane Gasoline. Energy & E	5.1	20
187	Burning velocities and jet-stirred reactor oxidation of diethyl carbonate. Proceedings of the Combustion Institute, 2017, 36, 553-560.	3.9	20
188	Oxidation of neopentane in a jet-stirred reactor from $1\ \text{to}\ 10\ \text{atm}$: an experimental and detailed kinetic modeling study. Combustion and Flame, 1999, 118, 191-203.	5.2	19
189	Ethyl Tertiary Butyl Ether Ignition and Combustion Using a Shock Tube and Spherical Bomb. Energy & Ene	5.1	19
190	Theoretical kinetic study for methyl levulinate: oxidation by OH and CH ₃ radicals and further unimolecular decomposition pathways. Physical Chemistry Chemical Physics, 2015, 17, 23384-23391.	2.8	19
191	A flash photolysis investigation of the UV absorption spectrum and self-reaction kinetics of CH2ClCH2O2 radicals in the gas phase. Chemical Physics Letters, 1988, 146, 589-595.	2.6	18
192	Improved optimization of polycyclic aromatic hydrocarbons (PAHs) mixtures resolution in reversed-phase high-performance liquid chromatography by using factorial design and response surface methodology. Talanta, 2010, 81, 265-274.	5 . 5	18
193	Low-temperature chemistry triggered by probe cooling in a low-pressure premixed flame. Combustion and Flame, 2019, 204, 260-267.	5.2	18
194	Ignition and oxidation of 1â€hexene/toluene mixtures in a shock tube and a jetâ€stirred reactor: Experimental and kinetic modeling study. International Journal of Chemical Kinetics, 2007, 39, 518-538.	1.6	17
195	Determination of Polycyclic Aromatic Hydrocarbons in kerosene and bio-kerosene soot. Chemosphere, 2010, 78, 1342-1349.	8.2	17
196	Computational Kinetic Study for the Unimolecular Decomposition Pathways of Cyclohexanone. Journal of Physical Chemistry A, 2015, 119, 7138-7144.	2.5	17
197	The Ignition and Oxidation of Tetrahydropyran: Experiments and Kinetic Modeling. Combustion Science and Technology, 1997, 129, 1-16.	2.3	16
198	Anharmonic thermochemistry of cyclopentadiene derivatives. International Journal of Chemical Kinetics, 2003, 35, 453-463.	1.6	16

#	Article	IF	Citations
199	Experimental and kinetic modeling study of the effect of sulfur dioxide on the mutual sensitization of the oxidation of nitric oxide and methane. International Journal of Chemical Kinetics, 2005, 37, 406-413.	1.6	16
200	Effect of Water Vapor on the Kinetics of Combustion of Hydrogen and Natural Gas: Experimental and Detailed Modeling Study. , 2008, , .		16
201	Oxidation Kinetics of Mixtures of Iso-Octane with Ethanol or Butanol in a Jet-Stirred Reactor: Experimental and Modeling Study. Combustion Science and Technology, 2012, 184, 1025-1038.	2.3	16
202	Photodegradation of Pyrene on Al ₂ O ₃ Surfaces: A Detailed Kinetic and Product Study. Journal of Physical Chemistry A, 2014, 118, 7007-7016.	2.5	16
203	Computational Kinetic Study for the Unimolecular Decomposition of Cyclopentanone. International Journal of Chemical Kinetics, 2015, 47, 439-446.	1.6	16
204	Effect of Additives on Combustion Characteristics of a Natural Gas Fueled HCCI Engine., 0,,.		15
205	Kinetics of propyl acetate oxidation: Experiments in a jet-stirred reactor, ab initio calculations, and rate constant determination. Proceedings of the Combustion Institute, 2019, 37, 429-436.	3.9	15
206	Cool flame chemistry of diesel surrogate compounds: n-Decane, 2-methylnonane, 2,7-dimethyloctane, and n-butylcyclohexane. Combustion and Flame, 2020, 219, 384-392.	5.2	15
207	Revisiting low temperature oxidation chemistry of n-heptane. Combustion and Flame, 2022, 242, 112177.	5.2	15
208	Impact of acetaldehyde and NO addition on the 1-octene oxidation under simulated HCCI conditions. Proceedings of the Combustion Institute, 2009, 32, 2861-2868.	3.9	14
209	Experimental and Modeling Study of the Kinetics of Oxidation of Methanolâ [°] Gasoline Surrogate Mixtures (M85 Surrogate) in a Jet-Stirred Reactor. Energy & Energy & 23, 1936-1941.	5.1	14
210	Mineral Oxides Change the Atmospheric Reactivity of Soot: NO ₂ Uptake under Dark and UV Irradiation Conditions. Journal of Physical Chemistry A, 2013, 117, 12897-12911.	2.5	14
211	Engine Performances and Emissions of Second-Generation Biofuels in Spark Ignition Engines: The Case of Methyl and Ethyl Valerates. , 0, , .		14
212	A high pressure oxidation study of di-n-propyl ether. Fuel, 2020, 263, 116554.	6.4	14
213	Gas phase studies of substituted methylperoxy radicals: the UV absorption spectrum and self-reaction kinetics of CH3OCH2O2 — the reaction of CF2ClO2 with Cl atoms. Journal of Photochemistry and Photobiology A: Chemistry, 1989, 48, 187-198.	3.9	13
214	The high-pressure reduction of nitric oxide by a natural gas blend. Combustion and Flame, 2005, 143, 135-137.	5. 2	13
215	An alternative to trial and error methodology in solid phase extraction: an original automated solid phase extraction procedure for analysing PAHs and PAH-derivatives in soot. RSC Advances, 2014, 4, 33636-33644.	3.6	13
216	Pyrolysis of butane-2,3â€'dione from low to high pressures: Implications for methyl-related growth chemistry. Combustion and Flame, 2019, 200, 69-81.	5 . 2	13

#	Article	IF	Citations
217	Experimental Characterization of Tetrahydrofuran Low-Temperature Oxidation Products Including Ketohydroperoxides and Highly Oxygenated Molecules. Energy & E	5.1	13
218	Insights into the oxidation kinetics of a cetane improver $\hat{a} \in 1,2$ -dimethoxyethane (1,2-DME) with experimental and modeling methods. Proceedings of the Combustion Institute, 2019, 37, 555-564.	3.9	12
219	Ozone-assisted combustion of hydrogen: AÂcomparison with isooctane. International Journal of Hydrogen Energy, 2019, 44, 13953-13963.	7.1	12
220	Oxidation of diethyl ether: Extensive characterization of products formed at low temperature using high resolution mass spectrometry. Combustion and Flame, 2021, 228, 340-350.	5.2	12
221	Experimental and kinetic modeling study of n-hexane oxidation. Detection of complex low-temperature products using high-resolution mass spectrometry. Combustion and Flame, 2021, 233, 111581.	5.2	12
222	NOx formation pathways in lean-premixed-prevapourized combustion of fuels with carbon-to-hydrogen ratio between 0.25 and 0.88. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221, 387-398.	1.4	11
223	Kinetics of Oxidation of a Reformulated Jet Fuel (1-Hexanol/Jet A-1) in a Jet-Stirred Reactor: Experimental and Modeling Study. Combustion Science and Technology, 2012, 184, 1039-1050.	2.3	11
224	Combustion of synthetic jet fuels: Naphthenic cut and blend with a gas-to-liquid (GtL) jet fuel. Proceedings of the Combustion Institute, 2017, 36, 433-440.	3.9	11
225	Methyl-3-hexenoate combustion chemistry: Experimental study and numerical kinetic simulation. Combustion and Flame, 2020, 222, 170-180.	5.2	11
226	Experimental and numerical studies of the diluent influence (N2, Ar, He, Xe) on stable premixed methane flames in micro-combustion. Proceedings of the Combustion Institute, 2021, 38, 6753-6761.	3.9	11
227	The gas phase UV absorption spectrum of CH3O2 radicals: A reinvestigation. Journal of Photochemistry and Photobiology A: Chemistry, 1990, 51, 133-140.	3.9	10
228	Experimental and Kinetic Modeling of the Oxidation of Synthetic Jet Fuels and Surrogates. Combustion Science and Technology, 2016, 188, 1705-1718.	2.3	10
229	A pyrolysis study on C4–C8 symmetric ethers. Proceedings of the Combustion Institute, 2021, 38, 329-336.	3.9	10
230	On the similarities and differences between the products of oxidation of hydrocarbons under simulated atmospheric conditions and cool flames. Atmospheric Chemistry and Physics, 2021, 21, 7845-7862.	4.9	10
231	A comprehensive experimental and modeling study of n-propylcyclohexane oxidation. Combustion and Flame, 2022, 238, 111944.	5.2	10
232	Detonability of simple and representative components of pyrolysis products of kerosene: pulsed detonation engine application. Shock Waves, 2005, 14, 283-291.	1.9	9
233	Kinetics of Natural Gas, Natural Gas/Syngas Mixtures Oxidation and Effect of Burnt Gas Recirculation: Experimental and Detailed Modeling., 2007,, 387.		9
234	Advances in PAHs/nitro-PAHs fractioning. Analytical Methods, 2010, 2, 2017.	2.7	9

#	Article	IF	CITATIONS
235	Experimental Study of the Oxidation of <i>N</i> -Tetradecane in a Jet-Stirred Reactor (JSR) and Detailed Chemical Kinetic Modeling. Combustion Science and Technology, 2014, 186, 594-606.	2.3	9
236	Identification and Quantification of Aromatic Hydrocarbons Adsorbed on Soot from Premixed Flames of Kerosene, Synthetic Kerosene, and Kerosene–Synthetic Biofuels. Energy & Fuels, 2015, 29, 6556-6564.	5.1	9
237	Experimental and kinetic modeling study of n-pentane oxidation at 10 atm, Detection of complex low-temperature products by Q-Exactive Orbitrap. Combustion and Flame, 2022, 235, 111723.	5.2	9
238	The ignition of oxetane in shock waves and oxidation in a jet-stirred reactor: An experimental and kinetic modeling study. Combustion and Flame, 1997, 110, 409-417.	5.2	8
239	Combustion of a Gas-to-Liquid–Based Alternative Jet Fuel: Experimental and Detailed Kinetic Modeling. Combustion Science and Technology, 2014, 186, 1275-1283.	2.3	8
240	Kinetics of Oxidation of a 100% Gas-to-Liquid Synthetic Jet Fuel and a Mixture GtL/1-Hexanol in a Jet-Stirred Reactor: Experimental and Modeling Study. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	1.1	8
241	An experimental and modeling study of the oxidation of 3-pentanol at high pressure. Proceedings of the Combustion Institute, 2019, 37, 477-484.	3.9	8
242	A flash photolysis investigation of the gas phase uv absorption spectrum and self-reaction kinetics of the neopentylperoxy radical. International Journal of Chemical Kinetics, 1990, 22, 1177-1187.	1.6	7
243	Chemical kinetics modeling of n-nonane oxidation in oxygen/argon using excited-state species time histories. Combustion and Flame, 2014, 161, 1146-1163.	5.2	7
244	Investigation of the Photochemical Reactivity of Soot Particles Derived from Biofuels Toward NO ₂ . A Kinetic and Product Study. Journal of Physical Chemistry A, 2015, 119, 2006-2015.	2.5	7
245	A Chemical Kinetic Investigation on Butyl Formate Oxidation: <i>Ab Initio</i> Calculations and Experiments in a Jet-Stirred Reactor. Energy & Experiments in a Jet-Stirred Reactor.	5.1	7
246	Oxidation of pentan-2-ol – Part I: Theoretical investigation on the decomposition and isomerization reactions of pentan-2-ol radicals. Proceedings of the Combustion Institute, 2021, 38, 823-832.	3.9	7
247	Low-temperature oxidation of a gasoline surrogate: Experimental investigation in JSR and RCM using high-resolution mass spectrometry. Combustion and Flame, 2021, 228, 128-141.	5.2	7
248	Experimental and kinetic modeling study of the oxidation of cyclopentane and methylcyclopentane at atmospheric pressure. International Journal of Chemical Kinetics, 2020, 52, 943-956.	1.6	6
249	Towards a Comprehensive Characterization of the Low-Temperature Autoxidation of Di-n-Butyl Ether. Molecules, 2021, 26, 7174.	3.8	6
250	Kinetics of Gas Turbine Liquid Fuels Combustion: Jet-A1 and Bio-Kerosene., 2007,, 93.		5
251	Towards Stoichiometric Combustion in HCCI Engines: Effect of Ozone Seeding and Dilution., 0,,.		5
252	Kinetics of oxidation of levulinic biofuels in a jet-stirred reactor: Methyl levulinate. Proceedings of the Combustion Institute, 2019, 37, 381-388.	3.9	5

#	Article	IF	Citations
253	Gasoline Surrogate Oxidation in a Motored Engine, a JSR, and an RCM: Characterization of Cool-Flame Products by High-Resolution Mass Spectrometry. Energy & Energy & 2022, 36, 3893-3908.	5.1	5
254	Application of an Ozone Generator to Control the Homogeneous Charge Compression Ignition Combustion Process. , 0, , .		4
255	The Combustion of Synthetic Jet Fuels (Gas to Liquid and Coal to Liquid) and Multi-Component Surrogates: Experimental and Modeling Study. , 2015, , .		4
256	Experimental and Modeling Study of the Oxidation of Two Branched Aldehydes in a Jet-Stirred Reactor: 2-Methylbutanal and 3-Methylbutanal. Energy & Energy & 2017, 31, 3206-3218.	5.1	4
257	More insight into cyclohexanone oxidation: Jet-stirred reactor experiments and kinetic modeling. Fuel, 2018, 220, 908-915.	6.4	4
258	The atmospheric impact of the reaction of N2O with NO3: A theoretical study. Chemical Physics Letters, 2019, 731, 136605.	2.6	4
259	Experiments for kinetic mechanism assessment. Computer Aided Chemical Engineering, 2019, 45, 445-471.	0.5	4
260	Emission of Carbonyl and Polyaromatic Hydrocarbon Pollutants From the Combustion of Liquid Fuels: Impact of Biofuel Blending. Journal of Engineering for Gas Turbines and Power, 2019, 141, .	1.1	4
261	Oxidation of pentan-2-ol – part II: Experimental and modeling study. Proceedings of the Combustion Institute, 2021, 38, 833-841.	3.9	4
262	Oxidation of C ₅ esters: Influence of the position of the ester function. International Journal of Chemical Kinetics, 2021, 53, 1124-1132.	1.6	4
263	Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel on the Initiation and the Combustion - Potential of Olefin Impact in a Diesel Base Fuel. Oil and Gas Science and Technology, 2008, 63, 419-432.	1.4	3
264	Kinetics of Kerosene Combustion Over Extended Conditions: Experimental and Modeling., 2006, , 1.		2
265	Homogeneous Charge Compression Ignition: formulation effect of a Diesel fuel on the Initiation and the Combustion - Potential of acetals Impact in a Diesel Base Fuel. , 2007, , .		2
266	The trapping system for the recirculated gases at different locations of the exhaust gas recirculation (EGR) pipe of a homogeneous charge compression ignition (HCCI) engine. Measurement Science and Technology, 2008, 19, 105104.	2.6	2
267	Pulsating combustion of ethylene in micro-channels with controlled temperature gradient. Combustion Science and Technology, 2018, , 1-11.	2.3	2
268	Polar Aromatic Compounds in Soot from Premixed Flames of Kerosene, Synthetic Paraffinic Kerosene, and Kerosene–Synthetic Biofuels. Energy & Energy & 11427-11444.	5.1	2
269	Energy transfer from vibrationally excited pentafluorobenzene to helium, xenon and water vapor. Chemical Physics Letters, 1988, 144, 299-304.	2.6	1
270	Energy transfer from vibrationally excited SF6 to benzene, hexafluorobenzene, fluorobenzene and toluene. Journal of Photochemistry and Photobiology A: Chemistry, 1988, 45, 151-165.	3.9	1

#	Article	IF	CITATIONS
271	Low-Temperature Oxidation of Di- <i>n</i> -Butyl Ether in a Motored Homogeneous Charge Compression Ignition (HCCI) Engine: Comparison of Characteristic Products with RCM and JSR Speciation by Orbitrap. Energy & Description of Characteristic Products with RCM and JSR Speciation by Orbitrap. Energy & Description of Characteristic Products with RCM and JSR Speciation by Orbitrap. Energy & Description of Characteristic Products with RCM and JSR Speciation by Orbitrap.	5.1	1
272	Impact of Ethylene and NO Addition on Fuel Oxidation Under Simulated HCCI Conditions. Combustion Science and Technology, 2010, 182, 422-435.	2.3	0
273	Experimental and Modeling Study of the Combustion of Synthetic Jet Fuels: Naphtenic Cut and Blend With a GtL Jet Fuel. , 2016, , .		O
274	Emission of Carbonyl and Polyaromatic Hydrocarbon Pollutants From the Combustion of Liquid Fuels: Impact of Biofuel Blending. , 2018, , .		0