Peter M Rogowsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490047/publications.pdf Version: 2024-02-01

PETER M ROCOWSKY

#	Article	IF	CITATIONS
1	Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane. Journal of Cell Biology, 2021, 220, .	5.2	17
2	Maize In Planta Haploid Inducer Lines: A Cornerstone for Doubled Haploid Technology. Methods in Molecular Biology, 2021, 2288, 25-48.	0.9	11
3	Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nature Plants, 2020, 6, 610-619.	9.3	85
4	Transcriptomics at Maize Embryo/Endosperm Interfaces Identifies a Transcriptionally Distinct Endosperm Subdomain Adjacent to the Embryo Scutellum. Plant Cell, 2020, 32, 833-852.	6.6	60
5	Single and multiple gene knockouts by CRISPR–Cas9 in maize. Plant Cell Reports, 2019, 38, 487-501.	5.6	54
6	The GMO90+ Project: Absence of Evidence for Biologically Meaningful Effects of Genetically Modified Maize-based Diets on Wistar Rats After 6-Months Feeding Comparative Trial. Toxicological Sciences, 2019, 168, 315-338.	3.1	12
7	Characterization of GMO or glyphosate effects on the composition of maize grain and maize-based diet for rat feeding. Metabolomics, 2018, 14, 36.	3.0	9
8	Rat feeding trials: A comprehensive assessment of contaminants in both genetically modified maize and resulting pellets. Food and Chemical Toxicology, 2018, 121, 573-582.	3.6	4
9	A Welcome Proposal to Amend the GMO Legislation of the EU. Trends in Biotechnology, 2018, 36, 1100-1103.	9.3	47
10	Loss of pollenâ€specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO Journal, 2017, 36, 707-717.	7.8	197
11	Signaling in Early Maize Kernel Development. Molecular Plant, 2017, 10, 375-388.	8.3	83
12	Haploid induction in plants. Current Biology, 2017, 27, R1095-R1097.	3.9	28
13	CRISPR-Cas Technology in Plant Science. Potato Research, 2017, 60, 353-360.	2.7	2
14	Fast virtual histology using X-ray in-line phase tomography: application to the 3D anatomy of maize developing seeds. Plant Methods, 2015, 11, 55.	4.3	49
15	Zm <scp>ZHOUPI</scp> , an endospermâ€specific basic helix–loop–helix transcription factor involved in maize seed development. Plant Journal, 2015, 84, 574-586.	5.7	48
16	Role of B3 domain transcription factors of the AFL family in maize kernel filling. Plant Science, 2015, 236, 116-125.	3.6	28
17	Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nature Genetics, 2015, 47, 1489-1493.	21.4	360
18	PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development. Journal of Experimental Botany, 2012, 63, 5843-5857.	4.8	66

Peter M Rogowsky

#	Article	IF	CITATIONS
19	Controlling lipid accumulation in cereal grains. Plant Science, 2012, 185-186, 33-39.	3.6	51
20	Duplicate Maize <i>Wrinkled1</i> Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis Â. Plant Physiology, 2011, 156, 674-686.	4.8	168
21	Functional characterization of the HD-ZIP IV transcription factor OCL1 from maize. Journal of Experimental Botany, 2011, 62, 293-305.	4.8	43
22	Overexpression of the Epidermis-Specific Homeodomain-Leucine Zipper IV Transcription Factor OUTER CELL LAYER1 in Maize Identifies Target Genes Involved in Lipid Metabolism and Cuticle Biosynthesis Â. Plant Physiology, 2010, 154, 273-286.	4.8	100
23	The Vpp1, Esr6a, Esr6b and OCL4 promoters are active in distinct domains of maize endosperm. Plant Science, 2010, 179, 86-96.	3.6	5
24	Putting the Function in Maize Genomics. Plant Genome, 2009, 2, .	2.8	1
25	Fertilization and early seed formation. Comptes Rendus - Biologies, 2008, 331, 715-725.	0.2	66
26	ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization. Plant Molecular Biology, 2003, 53, 821-836.	3.9	36
27	Analysis of ZmAE3 upstream sequences in maize endosperm and androgenic embryos. Sexual Plant Reproduction, 2003, 16, 1-8.	2.2	12
28	Esr proteins are secreted by the cells of the embryo surrounding region. Journal of Experimental Botany, 2002, 53, 1559-1568.	4.8	53
29	Expression patterns of genes encoding HD-ZipIV homeo domain proteins define specific domains in maize embryos and meristems. Plant Journal, 2000, 22, 401-414.	5.7	93
30	Esr genes show different levels of expression in the same region of maize endosperm. Gene, 2000, 246, 219-227.	2.2	56
31	Novel phenotypes and developmental arrest in early embryo specific mutants of maize. Planta, 1999, 210, 1-8.	3.2	29
32	Activation of hsr203, a Plant Gene Expressed During Incompatible Plant-Pathogen Interactions, Is Correlated with Programmed Cell Death. Molecular Plant-Microbe Interactions, 1998, 11, 544-554.	2.6	145
33	ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo. Plant Journal, 1997, 12, 235-246.	5.7	178
34	Polymerase chain reaction based mapping of rye involving repeated DNA sequences. Genome, 1992, 35, 621-626.	2.0	33
35	Structural heterogeneity in the R173 family of rye-specific repetitive DNA sequences. Plant Molecular Biology, 1992, 20, 95-102.	3.9	39
36	The R173 family of rye-specific repetitive DNA sequences: a structural analysis. Genome, 1991, 34, 88-95.	2.0	34

Peter M Rogowsky

#	Article	IF	CITATIONS
37	Cloning and characterisation of a new rye-specific repeated sequence. Genome, 1991, 34, 81-87.	2.0	138
38	Regulation of Genes Involved in T-DNA Processing: An Initial Step in the Genetic Modification of Plant Cells. , 1988, , 115-133.		1
39	Working with bacterial bioluminescence. Plant Molecular Biology Reporter, 1987, 5, 225-236.	1.8	24
40	Tn1721-encoded resolvase: structure of the tnpR gene and its in vitro functions. Molecular Genetics and Genomics, 1985, 200, 176-181.	2.4	24
41	On the Transposition and Evolution of Tn1721 and its Relatives. , 1985, 30, 79-91.		9
42	Definition of three resolvase binding sites at the res loci of Tn21 and Tn1721. EMBO Journal, 1985, 4, 2135-41.	7.8	25
43	Resolution of a hybrid cointegrate between transposons Tn501 and Tn1721 defines the recombination site. Molecular Genetics and Genomics, 1984, 193, 162-166.	2.4	17
44	DNA sequences of and complementation by the tnpR genes of Tn21, Tn501 and Tn1721. Molecular Genetics and Genomics, 1983, 191, 189-193.	2.4	98
45	The tetracycline resistance determinants of RP1 and Tnl721: nucleotide sequence analysis. Nucleic Acids Research, 1983, 11, 6089-6105.	14.5	202