Philip A. Wigge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490042/publications.pdf

Version: 2024-02-01

59 papers 9,915 citations

30 h-index 138484 58 g-index

76 all docs

76 docs citations

76 times ranked 8595 citing authors

#	Article	IF	CITATIONS
1	Warm Temperature Promotes Shoot Regeneration in <i>Arabidopsis thaliana</i> Physiology, 2022, 63, 618-634.	3.1	18
2	PHYTOCHROME-INTERACTING FACTORS: a promising tool to improve crop productivity. Journal of Experimental Botany, 2022, 73, 3881-3897.	4.8	18
3	Recent advances in understanding thermomorphogenesis signaling. Current Opinion in Plant Biology, 2022, 68, 102231.	7.1	31
4	The evening complex integrates photoperiod signals to control flowering in rice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	32
5	Fine tuning of hormonal signaling is linked to dormancy status in sweet cherry flower buds. Tree Physiology, 2021, 41, 544-561.	3.1	20
6	An early-morning gene network controlled by phytochromes and cryptochromes regulates photomorphogenesis pathways in Arabidopsis. Molecular Plant, 2021, 14, 983-996.	8.3	14
7	Exploring <i>PIF4i><i>i><i>ontribution to early flowering in plants under daily variable temperature and its tissueâ€specific flowering gene network. Plant Direct, 2021, 5, e339.</i></i></i>	1.9	8
8	The Evening Complex Establishes Repressive Chromatin Domains Via H2A.Z Deposition. Plant Physiology, 2020, 182, 612-625.	4.8	23
9	A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 2020, 585, 256-260.	27.8	337
10	Molecular mechanisms of Evening Complex activity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6901-6909.	7.1	101
11	AT-Hook Transcription Factors Restrict Petiole Growth by Antagonizing PIFs. Current Biology, 2020, 30, 1454-1466.e6.	3.9	39
12	ChIP-seq and RNA-seq for complex and low-abundance tree buds reveal chromatin and expression co-dynamics during sweet cherry bud dormancy. Tree Genetics and Genomes, 2020, 16, 1.	1.6	20
13	An RNA thermoswitch regulates daytime growth in Arabidopsis. Nature Plants, 2020, 6, 522-532.	9.3	155
14	Compartmentalized Synthesis of Triacylglycerol at the Inner Nuclear Membrane Regulates Nuclear Organization. Developmental Cell, 2019, 50, 755-766.e6.	7.0	52
15	LHY2 Integrates Night-Length Information to Determine Timing of Poplar Photoperiodic Growth. Current Biology, 2019, 29, 2402-2406.e4.	3.9	33
16	The presence of H3K4me3 histone mark is positively correlated with expression at the <i>DAM </i> loci in sweet cherry during dormancy. Acta Horticulturae, 2019, , 413-420.	0.2	1
17	From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy. BMC Genomics, 2019, 20, 974.	2.8	54
18	Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development. Current Biology, 2018, 28, 1273-1280.e3.	3.9	110

#	Article	IF	CITATIONS
19	Chloroplast Signaling Gates Thermotolerance in Arabidopsis. Cell Reports, 2018, 22, 1657-1665.	6.4	80
20	Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis. Methods in Molecular Biology, 2018, 1761, 231-248.	0.9	11
21	Plant Physiology: Out in the Midday Sun, Plants Keep Their Cool. Current Biology, 2017, 27, R28-R30.	3.9	1
22	Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes. Nature Communications, 2017, 8, 15309.	12.8	18
23	Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis. Molecular Plant, 2017, 10, 1258-1273.	8.3	169
24	The G-Box Transcriptional Regulatory Code in Arabidopsis. Plant Physiology, 2017, 175, 628-640.	4.8	108
25	The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nature Plants, 2017, 3, 17087.	9.3	205
26	Phytochrome B integrates light and temperature signals in <i>Arabidopsis</i> . Science, 2016, 354, 897-900.	12.6	637
27	Phytochromes function as thermosensors in <i>Arabidopsis</i> . Science, 2016, 354, 886-889.	12.6	694
28	Molecular and genetic control of plant thermomorphogenesis. Nature Plants, 2016, 2, 15190.	9.3	432
29	"Hitâ€andâ€runâ€. Transcription factors get caught in the act. BioEssays, 2015, 37, 748-754.	2.5	17
30	ELF3 Controls Thermoresponsive Growth in Arabidopsis. Current Biology, 2015, 25, 194-199.	3.9	225
31	Different mechanisms for <i>Arabidopsis thaliana</i> hybrid necrosis cases inferred from temperature responses. Plant Biology, 2014, 16, 1033-1041.	3 . 8	10
32	Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biology, 2013, 14, R65.	8.8	82
33	Ambient temperature signalling in plants. Current Opinion in Plant Biology, 2013, 16, 661-666.	7.1	181
34	Interlocking Feedback Loops Govern the Dynamic Behavior of the Floral Transition in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2013, 25, 820-833.	6.6	205
35	Simple network motifs can capture key characteristics of the floral transition in (i>Arabidopsis (i>. Plant Signaling and Behavior, 2013, 8, e26149.	2.4	22
36	Uncovering the interplay between DNA sequence preferences of transcription factors and nucleosomes. Cell Cycle, 2012, 11, 4487-4488.	2.6	6

#	Article	IF	CITATIONS
37	Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012, 484, 242-245.	27.8	622
38	Florigen takes two to tango. Nature Chemical Biology, 2011, 7, 665-666.	8.0	3
39	FT, A Mobile Developmental Signal in Plants. Current Biology, 2011, 21, R374-R378.	3.9	129
40	PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20231-20235.	7.1	562
41	The dynamic genome of Hydra. Nature, 2010, 464, 592-596.	27.8	743
42	H2A.Z-Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis. Cell, 2010, 140, 136-147.	28.9	821
43	Plant Development: PIF4 Integrates Diverse Environmental Signals. Current Biology, 2009, 19, R265-R266.	3.9	29
44	Red sky in the morning, shepherd's warning. Nature Genetics, 2007, 39, 1309-1310.	21.4	3
45	FT Protein Acts as a Long-Range Signal in Arabidopsis. Current Biology, 2007, 17, 1050-1054.	3.9	622
46	The control of flowering in time and space. Journal of Experimental Botany, 2006, 57, 3415-3418.	4.8	53
47	Ambient temperature perception in plants. Current Opinion in Plant Biology, 2005, 8, 483-486.	7.1	132
48	Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 2005, 309, 1056-1059.	12.6	1,230
49	Signaling in plants by intercellular RNA and protein movement. Genes and Development, 2002, 16, 151-158.	5.9	86
50	Genome studies and molecular genetics. Current Opinion in Plant Biology, 2002, 5, 89-90.	7.1	1
51	Physiology and metabolism. Current Opinion in Plant Biology, 2002, 5, 189-190.	7.1	0
52	Biotic interactions. Current Opinion in Plant Biology, 2002, 5, 275-276.	7.1	16
53	Cell biology. Current Opinion in Plant Biology, 2002, 5, 475-476.	7.1	0
54	Arabidopsis genome: Life without Notch. Current Biology, 2001, 11, R112-R114.	3.9	26

PHILIP A. WIGGE

#	Article	IF	CITATIONS
55	Genome studies and molecular genetics/Plant biotechnology web alert. Current Opinion in Plant Biology, 2001, 4, 101-102.	7.1	1
56	Physiology and metabolism. Current Opinion in Plant Biology, 2001, 4, 177-178.	7.1	4
57	Biotic interactions. Current Opinion in Plant Biology, 2001, 4, 277-278.	7.1	O
58	The Ndc80p Complex from Saccharomyces cerevisiae Contains Conserved Centromere Components and Has a Function in Chromosome Segregation. Journal of Cell Biology, 2001, 152, 349-360.	5.2	304
59	Analysis of the Saccharomyces Spindle Pole by Matrix-assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. Journal of Cell Biology, 1998, 141, 967-977.	5.2	317