Philip A. Wigge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9490042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science, 2005, 309, 1056-1059.	12.6	1,230
2	H2A.Z-Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis. Cell, 2010, 140, 136-147.	28.9	821
3	The dynamic genome of Hydra. Nature, 2010, 464, 592-596.	27.8	743
4	Phytochromes function as thermosensors in <i>Arabidopsis</i> . Science, 2016, 354, 886-889.	12.6	694
5	Phytochrome B integrates light and temperature signals in <i>Arabidopsis</i> . Science, 2016, 354, 897-900.	12.6	637
6	FT Protein Acts as a Long-Range Signal in Arabidopsis. Current Biology, 2007, 17, 1050-1054.	3.9	622
7	Transcription factor PIF4 controls the thermosensory activation of flowering. Nature, 2012, 484, 242-245.	27.8	622
8	PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20231-20235.	7.1	562
9	Molecular and genetic control of plant thermomorphogenesis. Nature Plants, 2016, 2, 15190.	9.3	432
10	A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis. Nature, 2020, 585, 256-260.	27.8	337
11	Analysis of the Saccharomyces Spindle Pole by Matrix-assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. Journal of Cell Biology, 1998, 141, 967-977.	5.2	317
12	The Ndc80p Complex from Saccharomyces cerevisiae Contains Conserved Centromere Components and Has a Function in Chromosome Segregation. Journal of Cell Biology, 2001, 152, 349-360.	5.2	304
13	ELF3 Controls Thermoresponsive Growth in Arabidopsis. Current Biology, 2015, 25, 194-199.	3.9	225
14	Interlocking Feedback Loops Govern the Dynamic Behavior of the Floral Transition in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 820-833.	6.6	205
15	The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nature Plants, 2017, 3, 17087.	9.3	205
16	Ambient temperature signalling in plants. Current Opinion in Plant Biology, 2013, 16, 661-666.	7.1	181
17	Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis. Molecular Plant, 2017, 10, 1258-1273.	8.3	169
18	An RNA thermoswitch regulates daytime growth in Arabidopsis. Nature Plants, 2020, 6, 522-532.	9.3	155

Philip A. Wigge

#	Article	IF	CITATIONS
19	Ambient temperature perception in plants. Current Opinion in Plant Biology, 2005, 8, 483-486.	7.1	132
20	FT, A Mobile Developmental Signal in Plants. Current Biology, 2011, 21, R374-R378.	3.9	129
21	Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development. Current Biology, 2018, 28, 1273-1280.e3.	3.9	110
22	The G-Box Transcriptional Regulatory Code in Arabidopsis. Plant Physiology, 2017, 175, 628-640.	4.8	108
23	Molecular mechanisms of Evening Complex activity in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6901-6909.	7.1	101
24	Signaling in plants by intercellular RNA and protein movement. Genes and Development, 2002, 16, 151-158.	5.9	86
25	Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biology, 2013, 14, R65.	8.8	82
26	Chloroplast Signaling Gates Thermotolerance in Arabidopsis. Cell Reports, 2018, 22, 1657-1665.	6.4	80
27	From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy. BMC Genomics, 2019, 20, 974.	2.8	54
28	The control of flowering in time and space. Journal of Experimental Botany, 2006, 57, 3415-3418.	4.8	53
29	Compartmentalized Synthesis of Triacylglycerol at the Inner Nuclear Membrane Regulates Nuclear Organization. Developmental Cell, 2019, 50, 755-766.e6.	7.0	52
30	AT-Hook Transcription Factors Restrict Petiole Growth by Antagonizing PIFs. Current Biology, 2020, 30, 1454-1466.e6.	3.9	39
31	LHY2 Integrates Night-Length Information to Determine Timing of Poplar Photoperiodic Growth. Current Biology, 2019, 29, 2402-2406.e4.	3.9	33
32	The evening complex integrates photoperiod signals to control flowering in rice. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	32
33	Recent advances in understanding thermomorphogenesis signaling. Current Opinion in Plant Biology, 2022, 68, 102231.	7.1	31
34	Plant Development: PIF4 Integrates Diverse Environmental Signals. Current Biology, 2009, 19, R265-R266.	3.9	29
35	Arabidopsis genome: Life without Notch. Current Biology, 2001, 11, R112-R114.	3.9	26
36	The Evening Complex Establishes Repressive Chromatin Domains Via H2A.Z Deposition. Plant Physiology, 2020, 182, 612-625.	4.8	23

PHILIP A. WIGGE

#	Article	IF	CITATIONS
37	Simple network motifs can capture key characteristics of the floral transition in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2013, 8, e26149.	2.4	22
38	ChIP-seq and RNA-seq for complex and low-abundance tree buds reveal chromatin and expression co-dynamics during sweet cherry bud dormancy. Tree Genetics and Genomes, 2020, 16, 1.	1.6	20
39	Fine tuning of hormonal signaling is linked to dormancy status in sweet cherry flower buds. Tree Physiology, 2021, 41, 544-561.	3.1	20
40	Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes. Nature Communications, 2017, 8, 15309.	12.8	18
41	Warm Temperature Promotes Shoot Regeneration in <i>Arabidopsis thaliana</i> . Plant and Cell Physiology, 2022, 63, 618-634.	3.1	18
42	PHYTOCHROME-INTERACTING FACTORS: a promising tool to improve crop productivity. Journal of Experimental Botany, 2022, 73, 3881-3897.	4.8	18
43	"Hitâ€andâ€runâ€r Transcription factors get caught in the act. BioEssays, 2015, 37, 748-754.	2.5	17
44	Biotic interactions. Current Opinion in Plant Biology, 2002, 5, 275-276.	7.1	16
45	An early-morning gene network controlled by phytochromes and cryptochromes regulates photomorphogenesis pathways in Arabidopsis. Molecular Plant, 2021, 14, 983-996.	8.3	14
46	Chromatin Immunoprecipitation Sequencing (ChIP-Seq) for Transcription Factors and Chromatin Factors in Arabidopsis thaliana Roots: From Material Collection to Data Analysis. Methods in Molecular Biology, 2018, 1761, 231-248.	0.9	11
47	Different mechanisms for <i>Arabidopsis thaliana</i> hybrid necrosis cases inferred from temperature responses. Plant Biology, 2014, 16, 1033-1041.	3.8	10
48	Exploring <i>PIF4's</i> contribution to early flowering in plants under daily variable temperature and its tissueâ€specific flowering gene network. Plant Direct, 2021, 5, e339.	1.9	8
49	Uncovering the interplay between DNA sequence preferences of transcription factors and nucleosomes. Cell Cycle, 2012, 11, 4487-4488.	2.6	6
50	Physiology and metabolism. Current Opinion in Plant Biology, 2001, 4, 177-178.	7.1	4
51	Red sky in the morning, shepherd's warning. Nature Genetics, 2007, 39, 1309-1310.	21.4	3
52	Florigen takes two to tango. Nature Chemical Biology, 2011, 7, 665-666.	8.0	3
53	Genome studies and molecular genetics/Plant biotechnology web alert. Current Opinion in Plant Biology, 2001, 4, 101-102.	7.1	1
54	Genome studies and molecular genetics. Current Opinion in Plant Biology, 2002, 5, 89-90.	7.1	1

PHILIP A. WIGGE

#	Article	IF	CITATIONS
55	Plant Physiology: Out in the Midday Sun, Plants Keep Their Cool. Current Biology, 2017, 27, R28-R30.	3.9	1
56	The presence of H3K4me3 histone mark is positively correlated with expression at the <i>DAM</i> loci in sweet cherry during dormancy. Acta Horticulturae, 2019, , 413-420.	0.2	1
57	Biotic interactions. Current Opinion in Plant Biology, 2001, 4, 277-278.	7.1	0
58	Physiology and metabolism. Current Opinion in Plant Biology, 2002, 5, 189-190.	7.1	0
59	Cell biology. Current Opinion in Plant Biology, 2002, 5, 475-476.	7.1	0