
Vishva M Dixit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/948985/publications.pdf Version: 2024-02-01

<u> VISHVA Μ DIVIT</u>

#	Article	IF	CITATIONS
1	NINJ1 mediates plasma membrane rupture during lytic cell death. Nature, 2021, 591, 131-136.	27.8	352
2	Selective activation of PFKL suppresses the phagocytic oxidative burst. Cell, 2021, 184, 4480-4494.e15.	28.9	61
3	Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host and Microbe, 2021, 29, 1521-1530.e10.	11.0	91
4	Dying cells fan the flames of inflammation. Science, 2021, 374, 1076-1080.	12.6	117
5	Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends in Neurosciences, 2020, 43, 55-73.	8.6	205
6	Ubiquitin Ligase COP1 Suppresses Neuroinflammation by Degrading c/EBPβ in Microglia. Cell, 2020, 182, 1156-1169.e12.	28.9	77
7	Integration of innate immune signalling by caspase-8 cleavage of N4BP1. Nature, 2020, 587, 275-280.	27.8	67
8	Paradise revealed III: why so many ways to die? Apoptosis, necroptosis, pyroptosis, and beyond. Cell Death and Differentiation, 2020, 27, 1740-1742.	11.2	13
9	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	9.7	71
10	Rescue from a fiery death: A therapeutic endeavor. Science, 2019, 366, 688-689.	12.6	23
11	Activity of caspase-8 determines plasticity between cell death pathways. Nature, 2019, 575, 679-682.	27.8	215
12	Cleavage of RIPK1 by caspase-8Âis crucial for limiting apoptosis and necroptosis. Nature, 2019, 574, 428-431.	27.8	310
13	The RIPK4–IRF6 signalling axis safeguards epidermal differentiation and barrier function. Nature, 2019, 574, 249-253.	27.8	51
14	Ubiquitin Ligases cIAP1 and cIAP2 Limit Cell Death to Prevent Inflammation. Cell Reports, 2019, 27, 2679-2689.e3.	6.4	44
15	IRF2 transcriptionally induces <i>GSDMD</i> expression for pyroptosis. Science Signaling, 2019, 12, .	3.6	120
16	The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. PLoS ONE, 2019, 14, e0214110.	2.5	48
17	Interview: a conversation with Vishva M Dixit on his journey from remote African village to apoptosis, necroptosis and the inflammasome. Cell Death and Differentiation, 2019, 26, 597-604.	11.2	2
18	The tumor suppressor <scp>BAP</scp> 1 cooperates with <scp>BRAFV</scp> 600E to promote tumor formation in cutaneous melanoma. Pigment Cell and Melanoma Research, 2019, 32, 269-279.	3.3	9

#	Article	IF	CITATIONS
19	Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science, 2019, 364, 283-285.	12.6	71
20	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
21	Crystal Structure of Ripk4 Reveals Dimerization-Dependent Kinase Activity. Structure, 2018, 26, 767-777.e5.	3.3	16
22	TBK1 and IKKε restrain cell death. Nature Cell Biology, 2018, 20, 1330-1331.	10.3	3
23	Ubiquitin ligase COP1 coordinates transcriptional programs that control cell type specification in the developing mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11244-11249.	7.1	22
24	OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature, 2018, 559, 120-124.	27.8	151
25	Ubiquitin in Cell-Cycle Regulation and Dysregulation in Cancer. Annual Review of Cancer Biology, 2017, 1, 59-77.	4.5	25
26	Transcription factor Etv5 is essential for the maintenance of alveolar type II cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3903-3908.	7.1	94
27	Assembly and Function of Heterotypic Ubiquitin Chains in Cell-Cycle and Protein Quality Control. Cell, 2017, 171, 918-933.e20.	28.9	245
28	A new lead to NLRP3 inhibition. Journal of Experimental Medicine, 2017, 214, 3147-3149.	8.5	18
29	The inflammasome turns 15. Nature, 2017, 548, 534-535.	27.8	44
30	Ubiquitin Signaling to NF-κB. , 2016, , 51-64.		0
31	Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Research, 2016, 26, 484-498.	12.0	365
32	NLRP3 recruitment by NLRC4 during <i>Salmonella</i> infection. Journal of Experimental Medicine, 2016, 213, 877-885.	8.5	128
33	RIPK1 inhibits ZBP1-driven necroptosis during development. Nature, 2016, 540, 129-133.	27.8	285
34	GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7858-7863.	7.1	677
35	Structural Analysis and Optimization of Context-Independent Anti-Hypusine Antibodies. Journal of Molecular Biology, 2016, 428, 603-617.	4.2	8
36	Inflammasomes: mechanism of assembly, regulation and signalling. Nature Reviews Immunology, 2016, 16, 407-420.	22.7	2,353

#	Article	IF	CITATIONS
37	Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCl² Kinase Activity. Journal of Immunology, 2016, 196, 3438-3451.	0.8	35
38	Ubiquitin in the activation and attenuation of innate antiviral immunity. Journal of Experimental Medicine, 2016, 213, 1-13.	8.5	184
39	Ubiquitin in the activation and attenuation of innate antiviral immunity. Journal of Cell Biology, 2016, 212, 21210IA305.	5.2	1
40	Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature, 2015, 528, 370-375.	27.8	227
41	Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 2015, 526, 666-671.	27.8	2,622
42	β-Cell Insulin Secretion Requires the Ubiquitin Ligase COP1. Cell, 2015, 163, 1457-1467.	28.9	43
43	Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature, 2015, 518, 417-421.	27.8	110
44	Activity of Protein Kinase RIPK3 Determines Whether Cells Die by Necroptosis or Apoptosis. Science, 2014, 343, 1357-1360.	12.6	545
45	Is SIRT2 required for necroptosis?. Nature, 2014, 506, E4-E6.	27.8	23
46	Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. Journal of Experimental Medicine, 2014, 211, 1947-1955.	8.5	53
47	Mechanisms and Functions of Inflammasomes. Cell, 2014, 157, 1013-1022.	28.9	1,999
48	A20—A Bipartite Ubiquitin Editing Enzyme with Immunoregulatory Potential. Advances in Experimental Medicine and Biology, 2014, 809, 1-12.	1.6	24
49	An interview with Vishva M. Dixit. Trends in Pharmacological Sciences, 2013, 34, 596-598.	8.7	2
50	Noncanonical Inflammasome Activation by Intracellular LPS Independent of TLR4. Science, 2013, 341, 1246-1249.	12.6	1,223
51	Signaling by Fyn-ADAP via the Carma1–Bcl-10–MAP3K7 signalosome exclusively regulates inflammatory cytokine production in NK cells. Nature Immunology, 2013, 14, 1127-1136.	14.5	85
52	Phosphorylation of Dishevelled by Protein Kinase RIPK4 Regulates Wnt Signaling. Science, 2013, 339, 1441-1445.	12.6	93
53	Polyclonal hyper-IgE mouse model reveals mechanistic insights into antibody class switch recombination. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15770-15775.	7.1	19
54	Phosphorylation of NLRC4 is critical for inflammasome activation. Nature, 2012, 490, 539-542.	27.8	254

#	Article	IF	CITATIONS
55	Signaling in Innate Immunity and Inflammation. Cold Spring Harbor Perspectives in Biology, 2012, 4, a006049-a006049.	5.5	1,206
56	Inflammasomes and Their Roles in Health and Disease. Annual Review of Cell and Developmental Biology, 2012, 28, 137-161.	9.4	794
57	Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature, 2012, 490, 288-291.	27.8	466
58	Engineering and Structural Characterization of a Linear Polyubiquitin-Specific Antibody. Journal of Molecular Biology, 2012, 418, 134-144.	4.2	105
59	Loss of the Tumor Suppressor BAP1 Causes Myeloid Transformation. Science, 2012, 337, 1541-1546.	12.6	355
60	Phosphorylation-dependent activity of the deubiquitinase DUBA. Nature Structural and Molecular Biology, 2012, 19, 171-175.	8.2	98
61	Regulation of NFâ€₽̂B by deubiquitinases. Immunological Reviews, 2012, 246, 107-124.	6.0	237
62	Using Linkage-Specific Monoclonal Antibodies to Analyze Cellular Ubiquitylation. Methods in Molecular Biology, 2012, 832, 185-196.	0.9	24
63	COP1 is a tumour suppressor that causes degradation of ETS transcription factors. Nature, 2011, 474, 403-406.	27.8	143
64	Non-canonical inflammasome activation targets caspase-11. Nature, 2011, 479, 117-121.	27.8	2,072
65	Mitochondrial reactive oxygen species drive proinflammatory cytokine production. Journal of Experimental Medicine, 2011, 208, 417-420.	8.5	617
66	USP1 Deubiquitinates ID Proteins to Preserve a Mesenchymal Stem Cell Program in Osteosarcoma. Cell, 2011, 146, 918-930.	28.9	212
67	Modulation of Inflammasome Pathways by Bacterial and Viral Pathogens. Journal of Immunology, 2011, 187, 597-602.	0.8	211
68	Deubiquitinase USP37 Is Activated by CDK2 to Antagonize APCCDH1 and Promote S Phase Entry. Molecular Cell, 2011, 42, 511-523.	9.7	131
69	Modulation of K11-Linkage Formation by Variable Loop Residues within UbcH5A. Journal of Molecular Biology, 2011, 408, 420-431.	4.2	41
70	Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nature Reviews Molecular Cell Biology, 2011, 12, 439-452.	37.0	381
71	Deubiquitinases in the regulation of NF- $\hat{I}^{e}B$ signaling. Cell Research, 2011, 21, 22-39.	12.0	219
72	Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature, 2011, 471, 110-114.	27.8	682

#	Article	IF	CITATIONS
73	Jürg Tschopp (1951–2011). Nature, 2011, 472, 296-296.	27.8	3
74	Improved Quantitative Mass Spectrometry Methods for Characterizing Complex Ubiquitin Signals. Molecular and Cellular Proteomics, 2011, 10, M110.003756.	3.8	124
75	Pannexin-1 Is Required for ATP Release during Apoptosis but Not for Inflammasome Activation. Journal of Immunology, 2011, 186, 6553-6561.	0.8	336
76	A20 edits ubiquitin and autoimmune paradigms. Nature Genetics, 2011, 43, 822-823.	21.4	37
77	Cross Talk between Ubiquitination and Demethylation. Molecular and Cellular Biology, 2011, 31, 3682-3683.	2.3	7
78	Modulation of Inflammasome Activity for the Treatment of Auto-inflammatory Disorders. Journal of Clinical Immunology, 2010, 30, 485-490.	3.8	25
79	Cytotoxins of the human pathogen <i>Aeromonas hydrophila</i> trigger, <i>via</i> the NLRP3 inflammasome, caspaseâ€l activation in macrophages. European Journal of Immunology, 2010, 40, 2797-2803.	2.9	54
80	Unleashing cell death: the Fas–FADD complex. Nature Structural and Molecular Biology, 2010, 17, 1289-1290.	8.2	15
81	Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature, 2010, 463, 103-107.	27.8	529
82	Signalling lessons from death receptors: the importance of cleavage. Nature Cell Biology, 2010, 12, 415-415.	10.3	2
83	Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nature Cell Biology, 2010, 12, 400-406.	10.3	117
84	Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against <i>Salmonella</i> . Journal of Experimental Medicine, 2010, 207, 1745-1755.	8.5	491
85	Increased Targeting of Donor Switch Region and IgE in Sγ1-Deficient B Cells. Journal of Immunology, 2010, 185, 166-173.	0.8	18
86	Absent in melanoma 2 is required for innate immune recognition of <i>Francisella tularensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9771-9776.	7.1	454
87	Signaling to NF-ÂB: Regulation by Ubiquitination. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003350-a003350.	5.5	258
88	K11-Linked Polyubiquitination in Cell Cycle Control Revealed by a K11 Linkage-Specific Antibody. Molecular Cell, 2010, 39, 477-484.	9.7	329
89	Ubiquitin Binding to A20 ZnF4 Is Required for Modulation of NF-κB Signaling. Molecular Cell, 2010, 40, 548-557.	9.7	171
90	Manipulation of Host Cell Death Pathways during Microbial Infections. Cell Host and Microbe, 2010, 8, 44-54	11.0	360

#	Article	IF	CITATIONS
91	Inflammasome-Dependent Release of the Alarmin HMGB1 in Endotoxemia. Journal of Immunology, 2010, 185, 4385-4392.	0.8	397
92	The Inflammasomes. PLoS Pathogens, 2009, 5, e1000510.	4.7	119
93	Association of C-Terminal Ubiquitin Hydrolase BRCA1-Associated Protein 1 with Cell Cycle Regulator Host Cell Factor 1. Molecular and Cellular Biology, 2009, 29, 2181-2192.	2.3	187
94	Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. Journal of Cell Biology, 2009, 187, 61-70.	5.2	673
95	Fatal Hepatitis Mediated by Tumor Necrosis Factor TNFα Requires Caspase-8 and Involves the BH3-Only Proteins Bid and Bim. Immunity, 2009, 30, 56-66.	14.3	128
96	IL-33 Raises Alarm. Immunity, 2009, 31, 5-7.	14.3	112
97	GPS navigation of the protein-stability landscape. Nature Biotechnology, 2009, 27, 46-48.	17.5	2
98	Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunology, 2009, 10, 348-355.	14.5	484
99	Inflammasomes: guardians of cytosolic sanctity. Immunological Reviews, 2009, 227, 95-105.	6.0	334
100	Masking MALT1: the paracaspase's potential for cancer therapy. Journal of Experimental Medicine, 2009, 206, 2309-2312.	8.5	17
101	Violation of the sanctity of the cytosolic compartment provokes the wrath of the inflammasome. Cytokine, 2009, 48, 45.	3.2	0
102	Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. Journal of Experimental Medicine, 2009, 206, i25-i25.	8.5	0
103	Ubiquitin Chain Editing Revealed by Polyubiquitin Linkage-Specific Antibodies. Cell, 2008, 134, 668-678.	28.9	514
104	Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine and Growth Factor Reviews, 2008, 19, 313-324.	7.2	82
105	A NOD2–NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to <i>Bacillus anthracis</i> infection and muramyl dipeptide. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7803-7808.	7.1	332
106	The BH3-Only Protein Bid Is Dispensable for DNA Damage- and Replicative Stress-Induced Apoptosis or Cell-Cycle Arrest. Cell, 2007, 129, 423-433.	28.9	189
107	Response: Does Bid Play a Role in the DNA Damage Response?. Cell, 2007, 130, 10-11.	28.9	14
108	IAP Antagonists Induce Autoubiquitination of c-IAPs, NF-κB Activation, and TNFα-Dependent Apoptosis. Cell. 2007. 131. 669-681.	28.9	1,124

#	Article	IF	CITATIONS
109	Targeted mass spectrometric strategy for global mapping of ubiquitination on proteins. Rapid Communications in Mass Spectrometry, 2007, 21, 3357-3364.	1.5	57
110	A Deubiquitinase That Regulates Type I Interferon Production. Science, 2007, 318, 1628-1632.	12.6	417
111	ATM Engages Autodegradation of the E3 Ubiquitin Ligase COP1 After DNA Damage. Science, 2006, 313, 1122-1126.	12.6	131
112	The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nature Immunology, 2006, 7, 318-325.	14.5	468
113	Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, 440, 228-232.	27.8	2,663
114	The Inhibitor of Apoptosis Protein Fusion c-IAP2·MALT1 Stimulates NF-κB Activation Independently of TRAF1 AND TRAF2. Journal of Biological Chemistry, 2006, 281, 29022-29029.	3.4	75
115	Unraveling TACIt functions. Nature Genetics, 2005, 37, 793-794.	21.4	8
116	Constitutive NF-κB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell, 2005, 7, 425-431.	16.8	135
117	<i>Yersinia</i> virulence factor YopJ acts as a deubiquitinase to inhibit NF-κB activation. Journal of Experimental Medicine, 2005, 202, 1327-1332.	8.5	213
118	Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. Journal of Experimental Medicine, 2005, 202, 1043-1049.	8.5	375
119	Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A. Journal of Cell Biology, 2005, 170, 745-755.	5.2	151
120	COP1, the Negative Regulator of p53, Is Overexpressed in Breast and Ovarian Adenocarcinomas. Cancer Research, 2004, 64, 7226-7230.	0.9	121
121	MALT1/Paracaspase Is a Signaling Component Downstream of CARMA1 and Mediates T Cell Receptor-induced NF-I®B Activation. Journal of Biological Chemistry, 2004, 279, 15870-15876.	3.4	111
122	Myodegeneration in EDA-A2 Transgenic Mice Is Prevented by XEDAR Deficiency. Molecular and Cellular Biology, 2004, 24, 1608-1613.	2.3	70
123	Kinase RIP3 Is Dispensable for Normal NF-κBs, Signaling by the B-Cell and T-Cell Receptors, Tumor Necrosis Factor Receptor 1, and Toll-Like Receptors 2 and 4. Molecular and Cellular Biology, 2004, 24, 1464-1469.	2.3	503
124	Rip2 Participates in Bcl10 Signaling and T-cell Receptor-mediated NF-κB Activation. Journal of Biological Chemistry, 2004, 279, 1570-1574.	3.4	84
125	Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature, 2004, 427, 167-171.	27.8	495
126	The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature, 2004, 429, 86-92.	27.8	633

#	Article	IF	CITATIONS
127	Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature, 2004, 430, 213-218.	27.8	1,627
128	De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature, 2004, 430, 694-699.	27.8	1,691
129	Human De-Etiolated-1 Regulates c-Jun by Assembling a CUL4A Ubiquitin Ligase. Science, 2004, 303, 1371-1374.	12.6	349
130	Mice Lacking the CARD of CARMA1 Exhibit Defective B Lymphocyte Development and Impaired Proliferation of Their B and T Lymphocytes. Current Biology, 2003, 13, 1247-1251.	3.9	143
131	The Crystal Structures of EDA-A1 and EDA-A2. Structure, 2003, 11, 1513-1520.	3.3	81
132	BAFF/BLyS Receptor 3 Comprises a Minimal TNF Receptor-like Module That Encodes a Highly Focused Ligand-Binding Site‡. Biochemistry, 2003, 42, 5977-5983.	2.5	58
133	Loss of TACI Causes Fatal Lymphoproliferation and Autoimmunity, Establishing TACI as an Inhibitory BLyS Receptor. Immunity, 2003, 18, 279-288.	14.3	366
134	Regulation of NF-κB-Dependent Lymphocyte Activation and Development by Paracaspase. Science, 2003, 302, 1581-1584.	12.6	365
135	SMAC Negatively Regulates the Anti-apoptotic Activity of Melanoma Inhibitor of Apoptosis (ML-IAP). Journal of Biological Chemistry, 2002, 277, 12275-12279.	3.4	150
136	Identification of a Novel Homotypic Interaction Motif Required for the Phosphorylation of Receptor-interacting Protein (RIP) by RIP3. Journal of Biological Chemistry, 2002, 277, 9505-9511.	3.4	295
137	BAFF/BLyS Receptor 3 Binds the B Cell Survival Factor BAFF Ligand through a Discrete Surface Loop and Promotes Processing of NF-l°B2. Immunity, 2002, 17, 515-524.	14.3	451
138	Identification of a Novel Death Domain-Containing Adaptor Molecule for Ectodysplasin-A Receptor that Is Mutated in crinkled Mice. Current Biology, 2002, 12, 409-413.	3.9	159
139	Apoptotic Molecular Machinery: Vastly Increased Complexity in Vertebrates Revealed by Genome Comparisons. Science, 2001, 291, 1279-1284.	12.6	309
140	The PYRIN domain: A member of the death domain-fold superfamily. Protein Science, 2001, 10, 1911-1918.	7.6	144
141	TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nature Immunology, 2001, 2, 632-637.	14.5	199
142	Activation and accumulation of B cells in TACI-deficient mice. Nature Immunology, 2001, 2, 638-643.	14.5	373
143	Identification of a novel receptor for B lymphocyte stimulator that is mutated in a mouse strain with severe B cell deficiency. Current Biology, 2001, 11, 1547-1552.	3.9	374
144	Impaired c-Jun Amino Terminal Kinase Activity and T Cell Differentiation in Death Receptor 6–deficient Mice. Journal of Experimental Medicine, 2001, 194, 1441-1448.	8.5	55

#	Article	IF	CITATIONS
145	Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis. Journal of Cell Science, 2001, 114, 3771-3778.	2.0	242
146	Identification of a receptor for BLyS demonstrates a crucial role in humoral immunity. Nature Immunology, 2000, 1, 37-41.	14.5	223
147	Response to 'Secreted IgM versus BLyS in germinal center formation'. Nature Immunology, 2000, 1, 179-179.	14.5	0
148	ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Current Biology, 2000, 10, 1359-1366.	3.9	389
149	Src-like Adaptor Protein (Slap) Is a Negative Regulator of T Cell Receptor Signaling. Journal of Experimental Medicine, 2000, 191, 463-474.	8.5	111
150	Characterization of Calcium Release-activated Apoptosis of LNCaP Prostate Cancer Cells. Journal of Biological Chemistry, 2000, 275, 11470-11477.	3.4	115
151	Apoptosis Signaling. Annual Review of Biochemistry, 2000, 69, 217-245.	11.1	1,404
152	Identification of Paracaspases and Metacaspases. Molecular Cell, 2000, 6, 961-967.	9.7	147
153	ICEBERG. Cell, 2000, 103, 99-111.	28.9	260
154	Two-Amino Acid Molecular Switch in an Epithelial Morphogen That Regulates Binding to Two Distinct Receptors. Science, 2000, 290, 523-527.	12.6	264
155	Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Current Biology, 2000, 10, 785-788.	3.9	380
156	Baculovirus-based Genetic Screen for Antiapoptotic Genes Identifies a Novel IAP. Journal of Biological Chemistry, 1999, 274, 36769-36773.	3.4	31
157	Caspase-9 Can Be Activated without Proteolytic Processing. Journal of Biological Chemistry, 1999, 274, 8359-8362.	3.4	436
158	RIP3, a Novel Apoptosis-inducing Kinase. Journal of Biological Chemistry, 1999, 274, 16871-16875.	3.4	208
159	mE10, a Novel Caspase Recruitment Domain-containing Proapoptotic Molecule. Journal of Biological Chemistry, 1999, 274, 10287-10292.	3.4	105
160	Cleavage of Automodified Poly(ADP-ribose) Polymerase during Apoptosis. Journal of Biological Chemistry, 1999, 274, 28379-28384.	3.4	400
161	Searching for FLASH domains. Nature, 1999, 401, 662-662.	27.8	20
162	Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nature Genetics, 1999, 22, 63-68.	21.4	356

#	Article	IF	CITATIONS
163	Apoptosis control by death and decoy receptors. Current Opinion in Cell Biology, 1999, 11, 255-260.	5.4	1,205
164	The domains of death: evolution of the apoptosis machinery. Trends in Biochemical Sciences, 1999, 24, 47-53.	7.5	393
165	Reply to Kolesnick and Hannun, and Perry and Hannun. Trends in Biochemical Sciences, 1999, 24, 227.	7.5	26
166	Src-like adaptor protein (Slap) is a negative regulator of mitogenesis. Current Biology, 1998, 8, 975-978.	3.9	67
167	Ceramide in apoptosis—does it really matter?. Trends in Biochemical Sciences, 1998, 23, 374-377.	7.5	181
168	Lymphocyte granule-mediated apoptosis: matters of viral mimicry and deadly proteases. Trends in Immunology, 1998, 19, 30-36.	7.5	119
169	Death Receptors: Signaling and Modulation. Science, 1998, 281, 1305-1308.	12.6	5,030
170	A Role for FADD in T Cell Activation and Development. Immunity, 1998, 8, 439-449.	14.3	236
171	TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Letters, 1998, 424, 41-45.	2.8	283
172	Activation of caspases triggered by cytochrome c in vitro 1. FEBS Letters, 1998, 426, 151-154.	2.8	101
173	Corrigendum to: Activation of caspases triggered by cytochrome c in vitro (FEBS 20097). FEBS Letters, 1998, 428, 309-309.	2.8	1
174	Identification and functional characterization of DR6, a novel death domain-containing TNF receptor. FEBS Letters, 1998, 431, 351-356.	2.8	249
175	Proteolysis of Poly(ADP-Ribose) Polymerase by Caspase 3: Kinetics of Cleavage of Mono(ADP-Ribosyl)ated and DNA-Bound Substrates. Radiation Research, 1998, 150, 3.	1.5	53
176	RIP2 Is a Novel NF-κB-activating and Cell Death-inducing Kinase. Journal of Biological Chemistry, 1998, 273, 16968-16975.	3.4	390
177	Caspase-14 Is a Novel Developmentally Regulated Protease. Journal of Biological Chemistry, 1998, 273, 29648-29653.	3.4	126
178	Caspase-9, Bcl-XL, and Apaf-1 Form a Ternary Complex. Journal of Biological Chemistry, 1998, 273, 5841-5845.	3.4	460
179	The Death Inhibitory Molecules CED-9 and CED-4L Use a Common Mechanism to Inhibit the CED-3 Death Protease. Journal of Biological Chemistry, 1998, 273, 17708-17712.	3.4	31
180	Apoptosis Induced by Drosophila Reaper and Grim in a Human System. Journal of Biological Chemistry, 1998, 273, 24009-24015.	3.4	89

#	Article	IF	CITATIONS
181	ERICE, a Novel FLICE-activatable Caspase. Journal of Biological Chemistry, 1998, 273, 15702-15707.	3.4	95
182	Apoptosis Induction by Caspase-8 Is Amplified through the Mitochondrial Release of Cytochrome c. Journal of Biological Chemistry, 1998, 273, 16589-16594.	3.4	332
183	An Induced Proximity Model for Caspase-8 Activation. Journal of Biological Chemistry, 1998, 273, 2926-2930.	3.4	879
184	Ultraviolet Radiation-induced Apoptosis Is Mediated by Activation of CD-95 (Fas/APO-1). Journal of Biological Chemistry, 1997, 272, 25783-25786.	3.4	273
185	Target Protease Specificity of the Viral Serpin CrmA. Journal of Biological Chemistry, 1997, 272, 7797-7800.	3.4	494
186	Bik and Bak Induce Apoptosis Downstream of CrmA but Upstream of Inhibitor of Apoptosis. Journal of Biological Chemistry, 1997, 272, 8841-8844.	3.4	69
187	I-FLICE, a Novel Inhibitor of Tumor Necrosis Factor Receptor-1- and CD-95-induced Apoptosis. Journal of Biological Chemistry, 1997, 272, 17255-17257.	3.4	363
188	A Novel Family of Viral Death Effector Domain-containing Molecules That Inhibit Both CD-95- and Tumor Necrosis Factor Receptor-1-induced Apoptosis. Journal of Biological Chemistry, 1997, 272, 9621-9624.	3.4	298
189	FLICE Induced Apoptosis in a Cell-free System. Journal of Biological Chemistry, 1997, 272, 2952-2956.	3.4	315
190	Fas-associated Death Domain Protein Interleukin-1β-converting Enzyme 2 (FLICE2), an ICE/Ced-3 Homologue, Is Proximally Involved in CD95- and p55-mediated Death Signaling. Journal of Biological Chemistry, 1997, 272, 6578-6583.	3.4	218
191	Interaction of CED-4 with CED-3 and CED-9: A Molecular Framework for Cell Death. Science, 1997, 275, 1122-1126.	12.6	626
192	The Receptor for the Cytotoxic Ligand TRAIL. Science, 1997, 276, 111-113.	12.6	1,665
193	An Antagonist Decoy Receptor and a Death Domain-Containing Receptor for TRAIL. Science, 1997, 277, 815-818.	12.6	1,455
194	IRAK (Pelle) Family Member IRAK-2 and MyD88 as Proximal Mediators of IL-1 Signaling. Science, 1997, 278, 1612-1615.	12.6	1,082
195	Reciprocal Expression of the Eph Receptor Cek5 and Its Ligand(s) in the Early Retina. Developmental Biology, 1997, 182, 256-269.	2.0	98
196	Portrait of an executioner: the molecular mechanism of Fas/APO-1-induced apoptosis. Seminars in Immunology, 1997, 9, 69-76.	5.6	95
197	Caspases: Intracellular Signaling by Proteolysis. Cell, 1997, 91, 443-446.	28.9	2,052
198	The inhibition of pro-apoptotic ICE-like proteases enhances HIV replication. Nature Medicine, 1997, 3, 333-337.	30.7	86

#	Article	IF	CITATIONS
199	RAIDD is a new 'death' adaptor molecule. Nature, 1997, 385, 86-89.	27.8	513
200	Role of CED-4 in the activation of CED-3. Nature, 1997, 388, 728-729.	27.8	185
201	T-cell receptor ligation by peptide/MHC induces activation of a caspase in immature thymocytes: the molecular basis of negative selection. EMBO Journal, 1997, 16, 2282-2293.	7.8	87
202	Purification of the Death Substrate Poly(ADP-ribose) Polymerase. Analytical Biochemistry, 1997, 249, 106-108.	2.4	8
203	ICE-LAP3, a Novel Mammalian Homologue of the Caenorhabditis elegans Cell Death Protein Ced-3 Is Activated during Fas- and Tumor Necrosis Factor-induced Apoptosis. Journal of Biological Chemistry, 1996, 271, 1621-1625.	3.4	266
204	FLICE, A Novel FADD-Homologous ICE/CED-3–like Protease, Is Recruited to the CD95 (Fas/APO-1) Death-Inducing Signaling Complex. Cell, 1996, 85, 817-827.	28.9	2,944
205	Recent advances in tumor necrosis factor and CD40 signaling. Current Opinion in Genetics and Development, 1996, 6, 39-44.	3.3	84
206	Signal Transduction by DR3, a Death Domain-Containing Receptor Related to TNFR-1 and CD95. Science, 1996, 274, 990-992.	12.6	625
207	The CED-3/ICE-like Protease Mch2 Is Activated during Apoptosis and Cleaves the Death Substrate Lamin A. Journal of Biological Chemistry, 1996, 271, 16443-16446.	3.4	399
208	ICE-LAP6, a Novel Member of the ICE/Ced-3 Gene Family, Is Activated by the Cytotoxic T Cell Protease Granzyme B. Journal of Biological Chemistry, 1996, 271, 16720-16724.	3.4	246
209	The cell-death machine. Current Biology, 1996, 6, 555-562.	3.9	358
210	Cytotoxic T-cell-derived granzyme B activates the apoptotic protease ICE-LAP3. Current Biology, 1996, 6, 897-899.	3.9	103
211	Molecular Ordering of the Cell Death Pathway. Journal of Biological Chemistry, 1996, 271, 4573-4576.	3.4	536
212	14-3-3 Proteins Associate with A20 in an Isoform-specific Manner and Function Both as Chaperone and Adapter Molecules. Journal of Biological Chemistry, 1996, 271, 20029-20034.	3.4	168
213	Direct Association between the Ret Receptor Tyrosine Kinase and the Src Homology 2-containing Adapter Protein Grb7. Journal of Biological Chemistry, 1996, 271, 10607-10610.	3.4	75
214	New Paradigm for Lymphocyte Granule-mediated Cytotoxicity. Journal of Biological Chemistry, 1996, 271, 29073-29079.	3.4	320
215	Type I Insulin-like Growth Factor Receptor Activation Regulates Apoptotic Proteins. Journal of Biological Chemistry, 1996, 271, 31791-31794.	3.4	147
216	Molecular Ordering of Apoptotic Mammalian CED-3/ICE-like Proteases. Journal of Biological Chemistry, 1996, 271, 20977-20980.	3.4	180

#	Article	IF	CITATIONS
217	FADD/MORT1 Is a Common Mediator of CD95 (Fas/APO-1) and Tumor Necrosis Factor Receptor-induced Apoptosis. Journal of Biological Chemistry, 1996, 271, 4961-4965.	3.4	680
218	Role of Ice-Proteases in Apoptosis. Advances in Experimental Medicine and Biology, 1996, 406, 113-117.	1.6	22
219	Fas- and Tumor Necrosis Factor-induced Apoptosis Is Inhibited by the Poxvirus crmA Gene Product. Journal of Biological Chemistry, 1995, 270, 3255-3260.	3.4	481
220	The Baculovirus p35 Protein Inhibits Fas- and Tumor Necrosis Factor-induced Apoptosis. Journal of Biological Chemistry, 1995, 270, 16526-16528.	3.4	308
221	Characterization of a Novel Src-like Adapter Protein That Associates with the Eck Receptor Tyrosine Kinase. Journal of Biological Chemistry, 1995, 270, 19201-19204.	3.4	108
222	The Ret Receptor Protein Tyrosine Kinase Associates with the SH2-containing Adapter Protein Grb10. Journal of Biological Chemistry, 1995, 270, 21461-21463.	3.4	118
223	Thrombospondin 3 Is a Pentameric Molecule Held Together by Interchain Disulfide Linkage Involving Two Cysteine Residues. Journal of Biological Chemistry, 1995, 270, 12725-12729.	3.4	38
224	Characterization of B61, the Ligand for the Eck Receptor Protein-Tyrosine Kinase. Journal of Biological Chemistry, 1995, 270, 5636-5641.	3.4	53
225	CrmA, a Poxvirus-encoded Serpin, Inhibits Cytotoxic T-lymphocyte-mediated Apoptosis. Journal of Biological Chemistry, 1995, 270, 22705-22708.	3.4	182
226	CrmA-inhibitable Cleavage of the 70-kDa Protein Component of the U1 Small Nuclear Ribonucleoprotein during Fas- and Tumor Necrosis Factor-induced Apoptosis. Journal of Biological Chemistry, 1995, 270, 18738-18741.	3.4	158
227	Activation of the B-cell Surface Receptor CD40 Induces A20, a Novel Zinc Finger Protein That Inhibits Apoptosis. Journal of Biological Chemistry, 1995, 270, 12343-12346.	3.4	189
228	FADD, a novel death domain-containing protein, interacts with the death domain of fas and initiates apoptosis. Cell, 1995, 81, 505-512.	28.9	2,298
229	Yama/CPP32β, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell, 1995, 81, 801-809.	28.9	2,396
230	cDNA Cloning and Characterization of a Cek7 Receptor Protein-tyrosine Kinase Ligand That Is Identical to the Ligand (ELF-1) for the Mek-4 and Sek Receptor Protein-tyrosine Kinases. Journal of Biological Chemistry, 1995, 270, 3467-3470.	3.4	32
231	Expression of thrombospondin in the adult nervous system. Journal of Comparative Neurology, 1994, 340, 126-139.	1.6	31
232	Keratinocyte Activation Following T-Lymphocyte Binding. Journal of Investigative Dermatology, 1992, 98, 92-95.	0.7	31
233	Thrombospondin and tumor necrosis factor. Kidney International, 1992, 41, 679-682.	5.2	3
234	Thrombospondin Binding by Keratinocytes: Modulation under Conditions which Alter Thrombospondin Biosynthesis. Dermatology, 1990, 180, 60-65.	2.1	5

#	Article	IF	CITATIONS
235	All-Trans Retinoic Acid Stimulates Growth and Extracellular Matrix Production in Growth-Inhibited Cultured Human Skin Fibroblasts. Journal of Investigative Dermatology, 1990, 94, 717-723.	0.7	83
236	Modulation of Squamous Carcinoma Cell Growth, Morphology, Adhesiveness and Extracellular Matrix Production by Interferon-γ and Tumor Necrosis Factor-α. Pathobiology, 1990, 58, 279-286.	3.8	16
237	Structure and chromosomal localization of the human thrombospondin gene. Genomics, 1990, 6, 685-691.	2.9	55
238	Characterization of thrombospondin synthesis, secretion and cell surface expression by human tumor cells. Clinical and Experimental Metastasis, 1989, 7, 265-276.	3.3	60
239	All-Trans Retinoic Acid Stimulates Growth of Adult Human Keratinocytes Cultured in Growth Factor-Deficient Medium, Inhibits Production of Thrombospondin and Fibronectin, and Reduces Adhesion. Journal of Investigative Dermatology, 1989, 93, 449-454.	0.7	85
240	Stimulation of fibroblast proliferation by thrombospondin. Biochemical and Biophysical Research Communications, 1989, 163, 56-63.	2.1	53
241	Production and utilization of extracellular matrix components by human melanocytes. Experimental Cell Research, 1989, 180, 314-325.	2.6	36
242	Inhibitory Effect of Gamma Interferon on Cultured Human Keratinocyte Thrombospondin Production, Distribution, and Biologic Activities. Journal of Investigative Dermatology, 1988, 91, 213-218.	0.7	32
243	Thrombospondin binding by human squamous carcinoma and melanoma cells: Relationship to biological activity. Experimental Cell Research, 1988, 174, 319-329.	2.6	48
244	Structure of Human Thrombospondin: Complete Amino Acid Sequence Derived from cDNA. Seminars in Thrombosis and Hemostasis, 1987, 13, 255-260.	2.7	7
245	Tumor type-specific differences in cell-substrate adhesion among human tumor cell lines. International Journal of Cancer, 1987, 39, 397-403.	5.1	34
246	Human Keratinocytes Synthesize and Secrete the Extracellular Matrix Protein, Thrombospondin. Journal of Investigative Dermatology, 1987, 88, 207-211.	0.7	46
247	Mapping Functional Domains of Human Platelet Thrombospondin with Electro-Blotting and High Sensitivity Sequencing. , 1987, , 471-477.		0
248	Thrombospondin-induced attachment and spreading of human squamous carcinoma cells. Experimental Cell Research, 1986, 167, 376-390.	2.6	116
249	Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. Nature, 1985, 318, 64-66.	27.8	363
250	Characterization of the platelet agglutinating activity of thrombospondin. Biochemistry, 1985, 24, 3128-3134.	2.5	20
251	Effects of antithrombospondin monoclonal antibodies on the agglutination of erythrocytes and fixed, activated platelets by purified thrombospondin. Biochemistry, 1985, 24, 4270-4275.	2.5	40
252	Localization of the hemagglutinating activity of platelet thrombospondin to a 140,000-dalton thermolytic fragment. Biochemistry, 1984, 23, 5597-5603.	2.5	49

#	Article	IF	CITATIONS
253	Isolation of the fibrinogen-binding region of platelet thrombospondin. Biochemical and Biophysical Research Communications, 1984, 119, 1075-1081.	2.1	56