
Kunihiro Matsumoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9489385/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of Apoptosis by ASK1, a Mammalian MAPKKK That Activates SAPK/JNK and p38 Signaling Pathways. Science, 1997, 275, 90-94.	12.6	2,209
2	The kinase TAK1 can activate the NIK-lκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 1999, 398, 252-256.	27.8	1,118
3	Essential function for the kinase TAK1 in innate and adaptive immune responses. Nature Immunology, 2005, 6, 1087-1095.	14.5	839
4	A Conserved p38 MAP Kinase Pathway in Caenorhabditis elegans Innate Immunity. Science, 2002, 297, 623-626.	12.6	746
5	TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes and Development, 2005, 19, 2668-2681.	5.9	632
6	ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nature Immunology, 2005, 6, 587-592.	14.5	605
7	The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature, 1999, 399, 798-802.	27.8	569
8	TAB2, a Novel Adaptor Protein, Mediates Activation of TAK1 MAPKKK by Linking TAK1 to TRAF6 in the IL-1 Signal Transduction Pathway. Molecular Cell, 2000, 5, 649-658.	9.7	555
9	The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt-5a/Ca ²⁺ Pathway To Antagonize Wnt/l²-Catenin Signaling. Molecular and Cellular Biology, 2003, 23, 131-139.	2.3	503
10	Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO Journal, 2001, 20, 1271-1280.	7.8	427
11	A Novel Kinase Cascade Mediated by Mitogen-activated Protein Kinase Kinase 6 and MKK3. Journal of Biological Chemistry, 1996, 271, 13675-13679.	3.4	417
12	Involvement of the p38 Mitogen-activated Protein Kinase Pathway in Transforming Growth Factor-β-induced Gene Expression. Journal of Biological Chemistry, 1999, 274, 27161-27167.	3.4	407
13	WNK1 Regulates Phosphorylation of Cation-Chloride-coupled Cotransporters via the STE20-related Kinases, SPAK and OSR1. Journal of Biological Chemistry, 2005, 280, 42685-42693.	3.4	401
14	A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-Î ³ transactivation. Nature Cell Biology, 2007, 9, 1273-1285.	10.3	400
15	A Resorcylic Acid Lactone, 52-7-Oxozeaenol, Prevents Inflammation by Inhibiting the Catalytic Activity of TAK1 MAPK Kinase Kinase. Journal of Biological Chemistry, 2003, 278, 18485-18490.	3.4	374
16	The <i>C. elegans</i> p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes and Development, 2005, 19, 2278-2283.	5.9	371
17	TAK1 is Critical for lκB Kinase-mediated Activation of the NF-κB Pathway. Journal of Molecular Biology, 2003, 326, 105-115.	4.2	353
18	The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature, 1998, 394, 92-96.	27.8	338

KUNIHIRO MATSUMOTO

#	Article	IF	CITATIONS
19	TAK1 Mediates the Ceramide Signaling to Stress-activated Protein Kinase/c-Jun N-terminal Kinase. Journal of Biological Chemistry, 1997, 272, 8141-8144.	3.4	307
20	Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature, 1999, 400, 166-169.	27.8	275
21	Cytokines suppress adipogenesis and PPAR-γ function through the TAK1/TAB1/NIK cascade. Nature Cell Biology, 2003, 5, 224-230.	10.3	274
22	MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature, 1999, 399, 793-797.	27.8	263
23	Interleukin-1 (IL-1) Receptor-Associated Kinase-Dependent IL-1-Induced Signaling Complexes Phosphorylate TAK1 and TAB2 at the Plasma Membrane and Activate TAK1 in the Cytosol. Molecular and Cellular Biology, 2002, 22, 7158-7167.	2.3	263
24	Receptor Activator of NF-κB Ligand (RANKL) Activates TAK1 Mitogen-Activated Protein Kinase Kinase Kinase through a Signaling Complex Containing RANK, TAB2, and TRAF6. Molecular and Cellular Biology, 2002, 22, 992-1000.	2.3	261
25	Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO Journal, 2003, 22, 6277-6288.	7.8	242
26	TAK1 Mitogen-activated Protein Kinase Kinase Kinase Is Activated by Autophosphorylation within Its Activation Loop. Journal of Biological Chemistry, 2000, 275, 7359-7364.	3.4	236
27	LRRK2 Modulates Vulnerability to Mitochondrial Dysfunction in Caenorhabditis elegans. Journal of Neuroscience, 2009, 29, 9210-9218.	3.6	220
28	UNC-16, a JNK-Signaling Scaffold Protein, Regulates Vesicle Transport in C. elegans. Neuron, 2001, 32, 787-800.	8.1	214
29	Regulation of the <i>Caenorhabditis elegans</i> oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16275-16280.	7.1	212
30	Regulation of Lymphoid Enhancer Factor 1/T-Cell Factor by Mitogen-Activated Protein Kinase-Related Nemo-Like Kinase-Dependent Phosphorylation in Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003, 23, 1379-1389.	2.3	202
31	Molecular characterization of Legionella pneumophila-induced interleukin-8 expression in T cells. BMC Microbiology, 2010, 10, 1.	3.3	195
32	IRAK-mediated Translocation of TRAF6 and TAB2 in the Interleukin-1-induced Activation of NFκB. Journal of Biological Chemistry, 2001, 276, 41661-41667.	3.4	193
33	The C. elegans Thermosensory Neuron AFD Responds to Warming. Current Biology, 2004, 14, 1291-1295.	3.9	192
34	The CaMKII UNC-43 Activates the MAPKKK NSY-1 to Execute a Lateral Signaling Decision Required for Asymmetric Olfactory Neuron Fates. Cell, 2001, 105, 221-232.	28.9	188
35	LRK-1, a C. elegans PARK8-Related Kinase, Regulates Axonal-Dendritic Polarity of SV Proteins. Current Biology, 2007, 17, 592-598.	3.9	188
36	New human gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature, 1992, 357, 700-702.	27.8	186

KUNIHIRO MATSUMOTO

#	Article	IF	CITATIONS
37	Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10738-10743.	7.1	181
38	Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of <i>C. elegans</i> . Science, 2008, 320, 803-807.	12.6	180
39	Interleukin-1 (IL-1) Receptor-Associated Kinase Leads to Activation of TAK1 by Inducing TAB2 Translocation in the IL-1 Signaling Pathway. Molecular and Cellular Biology, 2001, 21, 2475-2484.	2.3	179
40	Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10990-10994.	7.1	162
41	p38 Mitogen-Activated Protein Kinase Can Be Involved in Transforming Growth Factor Î ² Superfamily Signal Transduction in <i>Drosophila</i> Wing Morphogenesis. Molecular and Cellular Biology, 1999, 19, 2322-2329.	2.3	157
42	Purification and Identification of a Major Activator for p38 from Osmotically Shocked Cells. Journal of Biological Chemistry, 1996, 271, 26981-26988.	3.4	156
43	Phosphorylation of the Conserved Transcription Factor ATF-7 by PMK-1 p38 MAPK Regulates Innate Immunity in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1000892.	3.5	155
44	Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans. Genetics, 2006, 172, 2239-2252.	2.9	153
45	Wnt-1 signal induces phosphorylation and degradation of c-Myb protein via TAK1, HIPK2, and NLK. Genes and Development, 2004, 18, 816-829.	5.9	151
46	The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO Journal, 2004, 23, 2226-2234.	7.8	150
47	TAK1 Is a Master Regulator of Epidermal Homeostasis Involving Skin Inflammation and Apoptosis. Journal of Biological Chemistry, 2006, 281, 19610-19617.	3.4	136
48	Enterocyte-Derived TAK1 Signaling Prevents Epithelium Apoptosis and the Development of Ileitis and Colitis. Journal of Immunology, 2008, 181, 1143-1152.	0.8	136
49	A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19839-19844.	7.1	135
50	Dynamics and organization of MAP kinase signal pathways. Molecular Reproduction and Development, 1995, 42, 477-485.	2.0	133
51	Regulation of the TAK1 Signaling Pathway by Protein Phosphatase 2C. Journal of Biological Chemistry, 2001, 276, 5753-5759.	3.4	129
52	Distinct Domains of Mouse Dishevelled Are Responsible for the c-Jun N-terminal Kinase/Stress-activated Protein Kinase Activation and the Axis Formation in Vertebrates. Journal of Biological Chemistry, 1999, 274, 30957-30962.	3.4	127
53	Protein Phosphatase 6 Down-regulates TAK1 Kinase Activation in the IL-1 Signaling Pathway. Journal of Biological Chemistry, 2006, 281, 39891-39896.	3.4	124
54	Suppression of PPAR Transactivation Switches Cell Fate of Bone Marrow Stem Cells from Adipocytes into Osteoblasts. Annals of the New York Academy of Sciences, 2007, 1116, 182-195.	3.8	120

Kunihiro Matsumoto

#	Article	IF	CITATIONS
55	SEKâ€1 MAPKK mediates Ca 2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. EMBO Reports, 2002, 3, 56-62.	4.5	118
56	TAK1 Participates in c-Jun N-Terminal Kinase Signaling during Drosophila Development. Molecular and Cellular Biology, 2000, 20, 3015-3026.	2.3	116
57	TAB2 Is Essential for Prevention of Apoptosis in Fetal Liver but Not for Interleukin-1 Signaling. Molecular and Cellular Biology, 2003, 23, 1231-1238.	2.3	114
58	The <i>Caenorhabditis elegans</i> UNC-14 RUN Domain Protein Binds to the Kinesin-1 and UNC-16 Complex and Regulates Synaptic Vesicle Localization. Molecular Biology of the Cell, 2005, 16, 483-496.	2.1	112
59	A Metalloprotease Disintegrin That Controls Cell Migration in Caenorhabditis elegans. Science, 2000, 288, 2205-2208.	12.6	111
60	Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nature Cell Biology, 2010, 12, 278-285.	10.3	110
61	Identification of a possible MAP kinase cascade inArabidopsis thalianabased on pairwise yeast two-hybrid analysis and functional complementation tests of yeast mutants. FEBS Letters, 1998, 437, 56-60.	2.8	102
62	Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mechanisms of Development, 2002, 119, 239-249.	1.7	99
63	The Khd1 protein, which has three KH RNA-binding motifs, is required for proper localization of ASH1 mRNA in yeast. EMBO Journal, 2002, 21, 1158-1167.	7.8	96
64	Role of the TAK1-NLK-STAT3 pathway in TGF-Â-mediated mesoderm induction. Genes and Development, 2004, 18, 381-386.	5.9	96
65	TAK1 Regulates Reactive Oxygen Species and Cell Death in Keratinocytes, Which Is Essential for Skin Integrity. Journal of Biological Chemistry, 2008, 283, 26161-26168.	3.4	91
66	The <i>Caenorhabditis elegans</i> JIP3 Protein UNC-16 Functions As an Adaptor to Link Kinesin-1 with Cytoplasmic Dynein. Journal of Neuroscience, 2011, 31, 2216-2224.	3.6	90
67	The MAPK Kinase Kinase TAK1 Plays a Central Role in Coupling the Interleukin-1 Receptor to Both Transcriptional and RNA-targeted Mechanisms of Gene Regulation. Journal of Biological Chemistry, 2001, 276, 3508-3516.	3.4	85
68	The ERK-MAPK Pathway Regulates Longevity through SKN-1 and Insulin-like Signaling in Caenorhabditis elegans. Journal of Biological Chemistry, 2010, 285, 30274-30281.	3.4	81
69	Mib-Jag1-Notch signalling regulates patterning and structural roles of the notochord by controlling cell-fate decisions. Development (Cambridge), 2010, 137, 2527-2537.	2.5	80
70	The growth factor SVH-1 regulates axon regeneration in C. elegans via the JNK MAPK cascade. Nature Neuroscience, 2012, 15, 551-557.	14.8	80
71	A Fasting-Responsive Signaling Pathway that Extends Life Span in C.Âelegans. Cell Reports, 2013, 3, 79-91.	6.4	80
72	TAK1 Is a Central Mediator of NOD2 Signaling in Epidermal Cells. Journal of Biological Chemistry, 2008, 283, 137-144.	3.4	79

5

#	Article	IF	CITATIONS
73	TAK1-binding protein 2 facilitates ubiquitination of TRAF6 and assembly of TRAF6 with IKK in the IL-1 signaling pathway. Genes To Cells, 2005, 10, 447-454.	1.2	78
74	TAK1 kinase switches cell fate from apoptosis to necrosis following TNF stimulation. Journal of Cell Biology, 2014, 204, 607-623.	5.2	78
75	Regulation of the Interleukin-1-induced Signaling Pathways by a Novel Member of the Protein Phosphatase 2C Family (PP2Cε). Journal of Biological Chemistry, 2003, 278, 12013-12021.	3.4	77
76	STAT3 regulates Nemo-like kinase by mediating its interaction with IL-6-stimulated TGFÂ-activated kinase 1 for STAT3 Ser-727 phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4524-4529.	7.1	76
77	Leucine-rich repeat kinase LRRK1 regulates endosomal trafficking of the EGF receptor. Nature Communications, 2011, 2, 158.	12.8	75
78	Roles of MAP Kinase Cascades in Caenorhabditis elegans. Journal of Biochemistry, 2004, 136, 7-11.	1.7	74
79	Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability. Nature Cell Biology, 2005, 7, 1106-1112.	10.3	74
80	Elucidation of the c-Jun N-Terminal Kinase Pathway Mediated by Epstein-Barr Virus-Encoded Latent Membrane Protein 1. Molecular and Cellular Biology, 2004, 24, 192-199.	2.3	70
81	NLK positively regulates Wnt/β-catenin signalling by phosphorylating LEF1 in neural progenitor cells. EMBO Journal, 2012, 31, 1904-1915.	7.8	69
82	Dysregulated LRRK2 Signaling in Response to Endoplasmic Reticulum Stress Leads to Dopaminergic Neuron Degeneration in C. elegans. PLoS ONE, 2011, 6, e22354.	2.5	69
83	Transforming Growth Factor β-activated Kinase 1 (TAK1) Kinase Adaptor, TAK1-binding Protein 2, Plays Dual Roles in TAK1 Signaling by Recruiting Both an Activator and an Inhibitor of TAK1 Kinase in Tumor Necrosis Factor Signaling Pathway. Journal of Biological Chemistry, 2010, 285, 2333-2339.	3.4	64
84	PLK1-dependent activation of LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2. Nature Cell Biology, 2015, 17, 1024-1035.	10.3	62
85	TAK1-binding Protein 1, TAB1, Mediates Osmotic Stress-induced TAK1 Activation but Is Dispensable for TAK1-mediated Cytokine Signaling. Journal of Biological Chemistry, 2008, 283, 33080-33086.	3.4	61
86	The p38 signal transduction pathway participates in the oxidative stress-mediated translocation of DAF-16 to Caenorhabditis elegans nuclei. Mechanisms of Ageing and Development, 2005, 126, 642-647.	4.6	60
87	An Evolutionarily Conserved Motif in the TAB1 C-terminal Region Is Necessary for Interaction with and Activation of TAK1 MAPKKK. Journal of Biological Chemistry, 2001, 276, 24396-24400.	3.4	58
88	An NDPase links ADAM protease glycosylation with organ morphogenesis in C. elegans. Nature Cell Biology, 2004, 6, 31-37.	10.3	58
89	Nemoâ€like kinase is involved in NGFâ€induced neurite outgrowth via phosphorylating MAP1B and paxillin. Journal of Neurochemistry, 2009, 111, 1104-1118.	3.9	56
90	Osmotic Stress Activates the TAK1-JNK Pathway While Blocking TAK1-mediated NF-κB Activation. Journal of Biological Chemistry, 2006, 281, 28802-28810.	3.4	53

#	Article	IF	CITATIONS
91	ASK1 Inhibits Interleukin-1-induced NF-κB Activity through Disruption of TRAF6-TAK1 Interaction. Journal of Biological Chemistry, 2000, 275, 32747-32752.	3.4	52
92	Posttranscriptional Regulation of HO Expression by the Mkt1-Pbp1 Complex. Molecular and Cellular Biology, 2004, 24, 3670-3681.	2.3	52
93	The Yersinia enterocolitica effector YopP inhibits host cell signalling by inactivating the protein kinase TAK1 in the ILâ€I signalling pathway. EMBO Reports, 2006, 7, 838-844.	4.5	52
94	TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration. Blood, 2012, 120, 3846-3857.	1.4	52
95	Forgetting in C.Âelegans Is Accelerated by Neuronal Communication via the TIR-1/JNK-1 Pathway. Cell Reports, 2013, 3, 808-819.	6.4	52
96	TGF-β–Activated Kinase 1 Signaling Maintains Intestinal Integrity by Preventing Accumulation of Reactive Oxygen Species in the Intestinal Epithelium. Journal of Immunology, 2010, 185, 4729-4737.	0.8	51
97	Epithelial transforming growth factor Â-activated kinase 1 (TAK1) is activated through two independent mechanisms and regulates reactive oxygen species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3365-3370.	7.1	51
98	Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling. Nature Communications, 2012, 3, 1136.	12.8	48
99	<i>Caenorhabditis elegans</i> WNK–STE20 pathway regulates tube formation by modulating ClC channel activity. EMBO Reports, 2008, 9, 70-75.	4.5	41
100	Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans. Nature Communications, 2016, 7, 10388.	12.8	40
101	GLH-1, the C. elegans P granule protein, is controlled by the JNK KGB-1 and by the COP9 subunit CSN-5. Development (Cambridge), 2007, 134, 3383-3392.	2.5	38
102	LRRK1 phosphorylation of Rab7 at Ser-72 links trafficking of EGFR-containing endosomes to its effector RILP. Journal of Cell Science, 2019, 132, .	2.0	38
103	Ablation of TAK1 Upregulates Reactive Oxygen Species and Selectively Kills Tumor Cells. Cancer Research, 2010, 70, 8417-8425.	0.9	37
104	TAK1 MAPK Kinase Kinase Mediates Transforming Growth Factor-Î ² Signaling by Targeting SnoN Oncoprotein for Degradation. Journal of Biological Chemistry, 2007, 282, 9475-9481.	3.4	36
105	UNC-16/JIP3 regulates early events in synaptic vesicle protein trafficking via LRK-1/LRRK2 and AP complexes. PLoS Genetics, 2017, 13, e1007100.	3.5	36
106	A putative GDP–GTP exchange factor is required for development of the excretory cell in <i>Caenorhabditis elegans</i> . EMBO Reports, 2001, 2, 530-535.	4.5	35
107	Expression of Siamois and Twin in the blastula Chordin/Noggin signaling center is required for brain formation in Xenopus laevis embryos. Mechanisms of Development, 2008, 125, 58-66.	1.7	35
108	TAK1 Is a Component of the Epstein-Barr Virus LMP1 Complex and Is Essential for Activation of JNK but Not of NF-κB. Journal of Biological Chemistry, 2006, 281, 7863-7872.	3.4	34

#	Article	IF	CITATIONS
109	Role of the <i>Caenorhabditis elegans</i> Shc Adaptor Protein in the c-Jun N-Terminal Kinase Signaling Pathway. Molecular and Cellular Biology, 2008, 28, 7041-7049.	2.3	34
110	The Caenorhabditis elegans JNK Signaling Pathway Activates Expression of Stress Response Genes by Derepressing the Fos/HDAC Repressor Complex. PLoS Genetics, 2013, 9, e1003315.	3.5	33
111	EGFR-dependent phosphorylation of leucine-rich repeat kinase LRRK1 is important for proper endosomal trafficking of EGFR. Molecular Biology of the Cell, 2012, 23, 1294-1306.	2.1	31
112	Phosphatidylserine exposure mediated by ABC transporter activates the integrin signaling pathway promoting axon regeneration. Nature Communications, 2018, 9, 3099.	12.8	31
113	Axon Regeneration Is Regulated by Ets–C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways. PLoS Genetics, 2015, 11, e1005603.	3.5	30
114	TGF-β-activated kinase 1 mediates mechanical stress-induced IL-6 expression in osteoblasts. Biochemical and Biophysical Research Communications, 2011, 408, 202-207.	2.1	29
115	Regulation of Anoxic Death in <i>Caenorhabditis elegans</i> by Mammalian Apoptosis Signal-Regulating Kinase (ASK) Family Proteins. Genetics, 2011, 187, 785-792.	2.9	29
116	Homodimerization of Nemo-like kinase is essential for activation and nuclear localization. Molecular Biology of the Cell, 2011, 22, 266-277.	2.1	28
117	Endocannabinoid signaling regulates regenerative axon navigation in <i>Caenorhabditis elegans</i> via the GPCRs NPRâ€19 and NPRâ€32. Genes To Cells, 2016, 21, 696-705.	1.2	28
118	A mechanism for the suppression of interleukin-1-induced nuclear factor κB activation by protein phosphatase 2CÎ⊷2. Biochemical Journal, 2009, 423, 71-78.	3.7	27
119	The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK–JNK Signaling Pathway in Axon Regeneration. PLoS Genetics, 2016, 12, e1006475.	3.5	25
120	Phosphorylation of CLIP-170 by LRRK1 regulates EGFR trafficking by promoting recruitment of p150Glued to MT plus-ends. Journal of Cell Science, 2015, 128, 385-96.	2.0	24
121	Caenorhabditis elegans FOS-1 and JUN-1 Regulate <i>plc-1</i> Expression in the Spermatheca to Control Ovulation. Molecular Biology of the Cell, 2009, 20, 3888-3895.	2.1	22
122	A shift of the TOR adaptor from Rictor towards Raptor by semaphorin in C. elegans. Nature Communications, 2011, 2, 484.	12.8	20
123	The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2016, 36, 9710-9721.	3.6	20
124	Signal transduction cascades in axon regeneration: insights from C. elegans. Current Opinion in Genetics and Development, 2017, 44, 54-60.	3.3	20
125	The C.Âelegans BRCA2-ALP/Enigma Complex Regulates Axon Regeneration via a Rho GTPase-ROCK-MLC Phosphorylation Pathway. Cell Reports, 2018, 24, 1880-1889.	6.4	20
126	Functional analyses of mammalian protein kinase C isozymes in budding yeast and mammalian fibroblasts. Genes To Cells, 2003, 2, 601-614.	1.2	19

KUNIHIRO MATSUMOTO

#	Article	IF	CITATIONS
127	Chaperone complex <scp>BAG</scp> 2– <scp>HSC</scp> 70 regulates localization of <i>Caenorhabditis elegans</i> leucineâ€rich repeat kinase <scp>LRK</scp> â€1 to the Golgi. Genes To Cells, 2016, 21, 311-324.	1.2	16
128	Regulation of ERK activity duration by Sprouty contributes to dorsoventral patterning. Nature Cell Biology, 2009, 11, 106-109.	10.3	15
129	MAP kinase cascades regulating axon regeneration in <i>C. elegans</i> . Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2015, 91, 63-75.	3.8	15
130	The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis. Journal of Neuroscience, 2021, 41, 4754-4767.	3.6	15
131	The <i>Caenorhabditis elegans</i> Ste20-Related Kinase and Rac-Type Small GTPase Regulate the c-Jun N-Terminal Kinase Signaling Pathway Mediating the Stress Response. Molecular and Cellular Biology, 2010, 30, 995-1003.	2.3	14
132	TAK1 Binding Protein 2 Is Essential for Liver Protection from Stressors. PLoS ONE, 2014, 9, e88037.	2.5	14
133	Xenopus cyclin A1 can associate with Cdc28 in budding yeast, causing cell-cycle arrest with an abnormal distribution of nuclear DNA. Genes To Cells, 1997, 2, 329-343.	1.2	13
134	The Germinal Center Kinase GCK-1 Is a Negative Regulator of MAP Kinase Activation and Apoptosis in the C. elegans Germline. PLoS ONE, 2009, 4, e7450.	2.5	13
135	TAK1 (MAP3K7) Signaling Regulates Hematopoietic Stem Cells through TNF-Dependent and -Independent Mechanisms. PLoS ONE, 2012, 7, e51073.	2.5	11
136	TAK1 determines susceptibility to endoplasmic reticulum stress and hypothalamic leptin resistance. Journal of Cell Science, 2016, 129, 1855-65.	2.0	11
137	<i>C. elegans</i> Tensin Promotes Axon Regeneration by Linking the Met-like SVH-2 and Integrin Signaling Pathways. Journal of Neuroscience, 2019, 39, 5662-5672.	3.6	11
138	Tak1. The AFCS-nature Molecule Pages, 0, , .	0.2	11
139	The C.Âelegans HGF/Plasminogen-like Protein SVH-1 Has Protease-Dependent and -Independent Functions. Cell Reports, 2014, 9, 1628-1634.	6.4	10
140	<i>N</i> -Glycosylation of the Discoidin Domain Receptor Is Required for Axon Regeneration in <i>Caenorhabditis elegans</i> . Genetics, 2019, 213, 491-500.	2.9	6
141	BRCA1–BARD1 Regulates Axon Regeneration in Concert with the Gqα–DAG Signaling Network. Journal of Neuroscience, 2021, 41, 2842-2853.	3.6	6
142	CDK14 Promotes Axon Regeneration by Regulating the Noncanonical Wnt Signaling Pathway in a Kinase-Independent Manner. Journal of Neuroscience, 2021, 41, 8309-8320.	3.6	6
143	<scp>TDP</scp> 2 negatively regulates axon regeneration by inducing <scp>SUMO</scp> ylation of an Ets transcription factor. EMBO Reports, 2019, 20, e47517.	4.5	6
144	LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2. Cell Cycle, 2015, 14, 3349-3350.	2.6	4

#	Article	IF	CITATIONS
145	Chemical Signaling Regulates Axon Regeneration via the GPCR–Gqα Pathway in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2022, 42, 720-730.	3.6	4
146	Caenorhabditis elegans F-Box Protein Promotes Axon Regeneration by Inducing Degradation of the Mad Transcription Factor. Journal of Neuroscience, 2021, 41, 2373-2381.	3.6	3
147	UNC-16 alters DLK-1 localization and negatively regulates actin and microtubule dynamics in <i>Caenorhabditis elegans</i> regenerating neurons. Genetics, 2021, 219, .	2.9	3
148	Osmotic stress blocks NFâ€₽Bâ€dependent inflammatory responses by inhibiting ubiquitination of lκB. FEBS Letters, 2007, 581, 5549-5554.	2.8	2
149	Delta1 family members are involved in filopodial actin formation and neuronal cell migration independent of Notch signaling. Biochemical and Biophysical Research Communications, 2010, 398, 118-124.	2.1	2
150	Tab1. The AFCS-nature Molecule Pages, 0, , .	0.2	0