Jianwei Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9488588/publications.pdf

Version: 2024-02-01

394421 302126 1,538 42 19 39 citations h-index g-index papers 42 42 42 1271 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Oneâ€step treated wood by using natural source phytic acid and uracil for enhanced mechanical properties and flame retardancy. Polymers for Advanced Technologies, 2021, 32, 1176-1186.	3.2	23
2	<i>In</i> Situ Nitrogen Retention of Carbon Anode for Enhancing the Electrochemical Performance for Sodium″on Battery. Chemistry - A European Journal, 2021, 27, 8030-8039.	3.3	4
3	Fast prepare exfoliated montmorillonite water suspension with assistance of melamine cyanurate and the superlattice obtained by selfâ€assembly. Polymers for Advanced Technologies, 2021, 32, 2990-2999.	3.2	2
4	Fabrication of melamine trimetaphosphate 2D supermolecule and its superior performance on flame retardancy, mechanical and dielectric properties of epoxy resin. Composites Part B: Engineering, 2021, 225, 109269.	12.0	29
5	Study on flame retardancy of ammonium polyphosphate/montmorillonite nanocompound coated cellulose paper and its application as surface flame retarded treatment for polypropylene. Journal of Thermal Analysis and Calorimetry, 2021, 146, 2015-2025.	3.6	15
6	Graphene Nanoplatelets Hybrid Flame Retardant Containing Ionic Liquid and Ammonium Polyphosphate for Modified Bismaleimide Resin: Excellent Flame Retardancy, Thermal Stability, Water Resistance and Unique Dielectric Properties. Materials, 2021, 14, 6406.	2.9	6
7	Controllable layerâ€byâ€layer assembly based on brucite and alginates with the assistance of spray drying and flame retardancy influenced by gradients of alginates. Journal of Applied Polymer Science, 2020, 137, 47570.	2.6	5
8	Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexes as an allâ€inâ€one flame retardant for polypropylene. Polymers for Advanced Technologies, 2020, 31, 260-272.	3.2	16
9	Accelerating Thermal Stabilization by Pyrolytic Lignin for Partially Bioâ€Based Carbon Fiber Precursor. Macromolecular Materials and Engineering, 2020, 305, 1900618.	3.6	7
10	Poly(diallyldimethylammonium) and polyphosphate polyelectrolyte complex as flame retardant for char-forming epoxy resins. Journal of Fire Sciences, 2020, 38, 333-347.	2.0	6
11	Ammonium Polyphosphate with High Specific Surface Area by Assembling Zeolite Imidazole Framework in EVA Resin: Significant Mechanical Properties, Migration Resistance, and Flame Retardancy. Polymers, 2020, 12, 534.	4.5	13
12	Bio-based phytic acid and tannic acid chelate-mediated interfacial assembly of Mg(OH)2 for simultaneously improved flame retardancy, smoke suppression and mechanical properties of PVC. Composites Part B: Engineering, 2020, 188, 107854.	12.0	78
13	Effect of natural basalt fiber for EVA composites with nickel alginateâ€brucite based flame retardant on improving fire safety and mechanical properties. Polymers for Advanced Technologies, 2020, 31, 713-721.	3.2	14
14	Improving the fracture toughness and flame retardant properties of epoxy thermosets by phosphaphenanthrene/siloxane cluster-like molecules with multiple reactive groups. Composites Part B: Engineering, 2019, 178, 107481.	12.0	69
15	Ammonium polyphosphate modified with \hat{l}^2 -cyclodextrin crosslinking rigid polyurethane foam: Enhancing thermal stability and suppressing flame spread. Polymer Degradation and Stability, 2019, 161, 166-174.	5 . 8	63
16	Intrinsic flameâ€retardant epoxy resin composites with benzoxazine: Effect of a catalyst and a low curing temperature. Journal of Applied Polymer Science, 2019, 136, 47847.	2.6	12
17	Spray-Drying-Assisted Layer-by-Layer Assembly of Alginate, 3-Aminopropyltriethoxysilane, and Magnesium Hydroxide Flame Retardant and Its Catalytic Graphitization in Ethylene–Vinyl Acetate Resin. ACS Applied Materials & Interfaces, 2018, 10, 10490-10500.	8.0	77
18	Toughening Effect and Flame-Retardant Behaviors of Phosphaphenanthrene/Phenylsiloxane Bigroup Macromolecules in Epoxy Thermoset. Macromolecules, 2018, 51, 9992-10002.	4.8	144

#	Article	IF	CITATIONS
19	Thermal decomposition and flammability of rigid PU foams containing some DOPO derivatives and other phosphorus compounds. Journal of Analytical and Applied Pyrolysis, 2017, 124, 219-229.	5 . 5	81
20	Nitrocellulose-based hybrid materials with T7-POSS as a modifier: effective reinforcement for thermal stability, combustion safety, and mechanical properties. Journal of Polymer Research, 2017, 24, 1.	2.4	5
21	Pyrolysis and flame retardant behavior of a novel compound with multiple phosphaphenanthrene groups in epoxy thermosets. Journal of Analytical and Applied Pyrolysis, 2017, 127, 23-30.	5. 5	30
22	Gaseous-phase flame retardant behavior of a multi-phosphaphenanthrene compound in a polycarbonate composite. RSC Advances, 2017, 7, 51290-51297.	3.6	18
23	Rheological behavior of polycarbonate/ultrafine octaphenyl silsesquioxane (OPS) composites. Journal of Applied Polymer Science, 2016, 133, .	2.6	10
24	Layer-by-Layer Assembly of Multifunctional Flame Retardant Based on Brucite, 3-Aminopropyltriethoxysilane, and Alginate and Its Applications in Ethylene-Vinyl Acetate Resin. ACS Applied Materials & Interfaces, 2016, 8, 9925-9935.	8.0	96
25	Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Advances, 2016, 6, 74742-74756.	3 . 6	111
26	Percolation and catalysis effect of bambooâ€based active carbon on the thermal and flame retardancy properties of ethylene vinylâ€acetate rubber. Journal of Applied Polymer Science, 2015, 132, .	2.6	1
27	Smoke and toxicity suppression by zinc salts in flameâ€retardant polyurethaneâ€polyisocyanurate foams filled with phosphonate and chlorinated phosphate. Journal of Applied Polymer Science, 2015, 132, .	2.6	13
28	Catalyzing charring effect of solid acid boron phosphate on dipentaerythritol during the thermal degradation and combustion. Polymer Degradation and Stability, 2015, 119, 242-250.	5.8	13
29	Preparation of boron-coated expandable graphite and its application in flame retardant rigid polyurethane foam. Chemical Research in Chinese Universities, 2015, 31, 315-320.	2.6	25
30	A study on the fire resistance performance and thermal degradation behavior of a new intumescent flame retardant fluoroelastomer. Journal of Fire Sciences, 2014, 32, 362-373.	2.0	4
31	Catalytic pyrolysis and flame retardancy of epoxy resins with solid acid boron phosphate. Polymer Degradation and Stability, 2014, 110, 395-404.	5.8	63
32	Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly(ethylene terephthalate). Polymer Degradation and Stability, 2014, 100, 70-78.	5.8	70
33	Inorganic–organic hybrid coatingâ€encapsulated ammonium polyphosphate and its flame retardancy and water resistance in epoxy resin. Fire and Materials, 2014, 38, 312-322.	2.0	34
34	Optimization of sol–gel coatings on the surface of ammonium polyphosphate and its application in epoxy resin. Journal of Fire Sciences, 2012, 30, 357-371.	2.0	16
35	Some Developments in Halogen-Free Flame Retardancy of Polycarbonate and Its Blends. ACS Symposium Series, 2012, , 113-122.	0.5	2
36	Study of Intumescent Flame Retardant Copolyester Hot Melt Adhesive. ACS Symposium Series, 2012, , 183-191.	0.5	0

#	Article	IF	CITATIONS
37	Effects of organoclay modifiers on the flammability, thermal and mechanical properties of polycarbonate nanocomposites filled with a phosphate and organoclays. Polymer Degradation and Stability, 2012, 97, 108-117.	5.8	47
38	Study on the thermal degradation of mixtures of ammonium polyphosphate and a novel caged bicyclic phosphate and their flame retardant effect in polypropylene. Polymer Degradation and Stability, 2012, 97, 632-637.	5.8	105
39	Using TGA/FTIR TGA/MS and cone calorimetry to understand thermal degradation and flame retardancy mechanism of polycarbonate filled with solid bisphenol A bis(diphenyl phosphate) and montmorillonite. Polymer Degradation and Stability, 2012, 97, 605-614.	5.8	118
40	Flame retardancy and thermal properties of solid bisphenol A bis(diphenyl phosphate) combined with montmorillonite in polycarbonate. Polymer Degradation and Stability, 2010, 95, 2041-2048.	5.8	54
41	Study on fault diagnostic strategy of intelligent magnetic detection microsystems. Microsystem Technologies, 2009, 15, 89-94.	2.0	6
42	Synthesis, characteristic of a novel additive-type flame retardant containing silicon and its application in PC/ABS alloy. Journal of Materials Science, 2007, 42, 10106-10112.	3.7	33