Elliot S Gershon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9488359/publications.pdf

Version: 2024-02-01

117625 53230 9,762 87 34 85 citations h-index g-index papers 91 91 91 13546 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Antisaccade error rates and gap effects in psychosis syndromes from bipolar-schizophrenia network for intermediate phenotypes 2 (B-SNIP2). Psychological Medicine, 2022, 52, 2692-2701.	4.5	7
2	Psychosis Biotypes: Replication and Validation from the B-SNIP Consortium. Schizophrenia Bulletin, 2022, 48, 56-68.	4.3	38
3	Subtyping Schizophrenia Patients Based on Patterns of Structural Brain Alterations. Schizophrenia Bulletin, 2022, 48, 241-250.	4.3	28
4	Impact of polygenic risk for coronary artery disease and cardiovascular medication burden on cognitive impairment in psychotic disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2022, 113, 110464.	4.8	3
5	Correction of depressionâ€associated circadian rhythm abnormalities is associated with lithium response in bipolar disorder. Bipolar Disorders, 2022, 24, 521-529.	1.9	8
6	Real-time facial emotion recognition deficits across the psychosis spectrum: A B-SNIP Study. Schizophrenia Research, 2022, 243, 489-499.	2.0	3
7	A subtype of institutionalized patients with schizophrenia characterized by pronounced subcortical and cognitive deficits. Neuropsychopharmacology, 2022, , .	5.4	7
8	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	27.8	929
9	Inflammation subtypes in psychosis and their relationships with genetic risk for psychiatric and cardiometabolic disorders. Brain, Behavior, & Immunity - Health, 2022, 22, 100459.	2.5	8
10	Regional and Sex-Specific Alterations in the Visual Cortex of Individuals With Psychosis Spectrum Disorders. Biological Psychiatry, 2022, 92, 396-406.	1.3	12
11	Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder. Molecular Psychiatry, 2022, 27, 3842-3856.	7.9	5
12	Multivariate relationships between peripheral inflammatory marker subtypes and cognitive and brain structural measures in psychosis. Molecular Psychiatry, 2021, 26, 3430-3443.	7.9	75
13	GWAS significance thresholds for deep phenotyping studies can depend upon minor allele frequencies and sample size. Molecular Psychiatry, 2021, 26, 2048-2055.	7.9	24
14	Biotyping in psychosis: using multiple computational approaches with one data set. Neuropsychopharmacology, 2021, 46, 143-155.	5.4	25
15	Regression dynamic causal modeling for restingâ€state fMRI. Human Brain Mapping, 2021, 42, 2159-2180.	3.6	52
16	Reduced white matter microstructure in bipolar disorder with and without psychosis. Bipolar Disorders, 2021, 23, 801-809.	1.9	3
17	Circadian rhythms in bipolar disorder patient-derived neurons predict lithium response: preliminary studies. Molecular Psychiatry, 2021, 26, 3383-3394.	7.9	29
18	Biomarker Profiles in Psychosis Risk Groups Within Unaffected Relatives Based on Familiality and Age. Schizophrenia Bulletin, 2021, 47, 1058-1067.	4.3	3

#	Article	IF	CITATIONS
19	Neural Processing of Repeated Emotional Scenes in Schizophrenia, Schizoaffective Disorder, and Bipolar Disorder. Schizophrenia Bulletin, 2021, 47, 1473-1481.	4.3	2
20	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	21.4	629
21	Genome-wide association study accounting for anticholinergic burden to examine cognitive dysfunction in psychotic disorders. Neuropsychopharmacology, 2021, 46, 1802-1810.	5.4	17
22	An opportunity for primary prevention research in psychotic disorders. Schizophrenia Research, 2021,	2.0	1
23	Absence of coding somatic single nucleotide variants within well-known candidate genes in late-onset sporadic Alzheimer's Disease based on the analysis of multi-omics data. Neurobiology of Aging, 2021, 108, 207-209.	3.1	6
24	Characterisation of age and polarity at onset in bipolar disorder. British Journal of Psychiatry, 2021, 219, 659-669.	2.8	20
25	Auditory Oddball Responses Across the Schizophrenia-Bipolar Spectrum and Their Relationship to Cognitive and Clinical Features. American Journal of Psychiatry, 2021, 178, 952-964.	7.2	15
26	Characterizing functional regional homogeneity (ReHo) as a B-SNIP psychosis biomarker using traditional and machine learning approaches. Schizophrenia Research, 2020, 215, 430-438.	2.0	30
27	Smooth pursuit eye movement deficits as a biomarker for psychotic features in bipolar disorderâ€"Findings from the PARDIP study. Bipolar Disorders, 2020, 22, 602-611.	1.9	12
28	Brain gray matter network organization in psychotic disorders. Neuropsychopharmacology, 2020, 45, 666-674.	5 . 4	37
29	No connectivity alterations for striatum, default mode, or salience network in association with self-reported antipsychotic medication dose in a large chronic patient group. Schizophrenia Research, 2020, 223, 359-360.	2.0	2
30	Resting state auditory-language cortex connectivity is associated with hallucinations in clinical and biological subtypes of psychotic disorders. NeuroImage: Clinical, 2020, 27, 102358.	2.7	8
31	Distinguishing patterns of impairment on inhibitory control and general cognitive ability among bipolar with and without psychosis, schizophrenia, and schizoaffective disorder. Schizophrenia Research, 2020, 223, 148-157.	2.0	16
32	Cognitive Impairment and Diminished Neural Responses Constitute a Biomarker Signature of Negative Symptoms in Psychosis. Schizophrenia Bulletin, 2020, 46, 1269-1281.	4.3	12
33	The association between lithium use and neurocognitive performance in patients with bipolar disorder. Neuropsychopharmacology, 2020, 45, 1743-1749.	5.4	28
34	Retinal layer abnormalities and their association with clinical and brain measures in psychotic disorders: A preliminary study. Psychiatry Research - Neuroimaging, 2020, 299, 111061.	1.8	24
35	NMDA receptor antibody seropositivity in psychosis: A pilot study from the Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP). Schizophrenia Research, 2020, 218, 318-320.	2.0	2
36	Testing Psychosis Phenotypes From Bipolar–Schizophrenia Network for Intermediate Phenotypes for Clinical Application: Biotype Characteristics and Targets. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 808-818.	1.5	27

3

#	Article	IF	Citations
37	Auditory steady-state EEG response across the schizo-bipolar spectrum. Schizophrenia Research, 2019, 209, 218-226.	2.0	39
38	NRXN1 is associated with enlargement of the temporal horns of the lateral ventricles in psychosis. Translational Psychiatry, 2019, 9, 230.	4.8	18
39	Association of Choroid Plexus Enlargement With Cognitive, Inflammatory, and Structural Phenotypes Across the Psychosis Spectrum. American Journal of Psychiatry, 2019, 176, 564-572.	7.2	82
40	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	21.4	1,191
41	Entrainment of Circadian Rhythms to Temperature Reveals Amplitude Deficits in Fibroblasts from Patients with Bipolar Disorder and Possible Links to Calcium Channels. Molecular Neuropsychiatry, 2019, 5, 115-124.	2.9	9
42	Alterations in intrinsic frontoâ€thalamoâ€parietal connectivity are associated with cognitive control deficits in psychotic disorders. Human Brain Mapping, 2019, 40, 163-174.	3.6	17
43	Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder. European Neuropsychopharmacology, 2019, 29, 156-170.	0.7	7
44	Chronotype and cellular circadian rhythms predict the clinical response to lithium maintenance treatment in patients with bipolar disorder. Neuropsychopharmacology, 2019, 44, 620-628.	5.4	80
45	Shared Genetic Risk of Schizophrenia and Gray Matter Reduction in 6p22.1. Schizophrenia Bulletin, 2019, 45, 222-232.	4.3	31
46	Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. Translational Psychiatry, 2018, 8, 78.	4.8	49
47	Genetic analysis of deep phenotyping projects in common disorders. Schizophrenia Research, 2018, 195, 51-57.	2.0	11
48	Detecting significant genotype–phenotype association rules in bipolar disorder: market research meets complex genetics. International Journal of Bipolar Disorders, 2018, 6, 24.	2.2	8
49	The transcription factor POU3F2 regulates a gene coexpression network in brain tissue from patients with psychiatric disorders. Science Translational Medicine, 2018, 10, .	12.4	81
50	VEGFA GENE variation influences hallucinations and frontotemporal morphology in psychotic disorders: a B-SNIP study. Translational Psychiatry, 2018, 8, 215.	4.8	11
51	Peripheral oxytocin and vasopressin modulates regional brain activity differently in men and women with schizophrenia. Schizophrenia Research, 2018, 202, 173-179.	2.0	20
52	Impaired Context Processing is Attributable to Global Neuropsychological Impairment in Schizophrenia and Psychotic Bipolar Disorder. Schizophrenia Bulletin, 2017, 43, sbw081.	4.3	26
53	Cognitive burden of anticholinergic medications in psychotic disorders. Schizophrenia Research, 2017, 190, 129-135.	2.0	71
54	Genome-Wide Association Study of Male Sexual Orientation. Scientific Reports, 2017, 7, 16950.	3.3	44

#	Article	IF	Citations
55	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	21.4	838
56	The Pharmacogenomics of Bipolar Disorder study (PGBD): identification of genes for lithium response in a prospective sample. BMC Psychiatry, 2016, 16, 129.	2.6	61
57	Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Human Molecular Genetics, 2016, 25, 3383-3394.	2.9	182
58	Polygenic risk for type 2 diabetes mellitus among individuals with psychosis and their relatives. Journal of Psychiatric Research, 2016, 77, 52-58.	3.1	22
59	Sex and Diagnosis-Specific Associations Between DNA Methylation of the Oxytocin Receptor Gene With Emotion Processing and Temporal-Limbic and Prefrontal Brain Volumes in Psychotic Disorders. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2016, 1, 141-151.	1.5	45
60	Pursuit eye movements as an intermediate phenotype across psychotic disorders: Evidence from the B-SNIP study. Schizophrenia Research, 2015, 169, 326-333.	2.0	56
61	Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3576-3581.	7.1	152
62	Genetic and childhood trauma interaction effect on age of onset in bipolar disorder: An exploratory analysis. Journal of Affective Disorders, 2015, 179, 1-5.	4.1	40
63	Regressing to Prior Response Preference After Set Switching Implicates Striatal Dysfunction Across Psychotic Disorders: Findings From the B-SNIP Study. Schizophrenia Bulletin, 2015, 41, 940-950.	4.3	15
64	Genetic and genomic analyses as a basis for new diagnostic nosologies. Dialogues in Clinical Neuroscience, 2015, 17, 69-78.	3.7	7
65	Elevated Antisaccade Error Rate as an Intermediate Phenotype for Psychosis Across Diagnostic Categories. Schizophrenia Bulletin, 2014, 40, 1011-1021.	4.3	78
66	Reduced Levels of Vasopressin and Reduced Behavioral Modulation of Oxytocin in Psychotic Disorders. Schizophrenia Bulletin, 2014, 40, 1374-1384.	4.3	82
67	Behavioral response inhibition in psychotic disorders: Diagnostic specificity, familiality and relation to generalized cognitive deficit. Schizophrenia Research, 2014, 159, 491-498.	2.0	58
68	Emotion recognition deficits in schizophrenia-spectrum disorders and psychotic bipolar disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) study. Schizophrenia Research, 2014, 158, 105-112.	2.0	77
69	Ethical and public policy challenges for pharmacogenomics. Dialogues in Clinical Neuroscience, 2014, 16, 567-574.	3.7	16
70	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 2013, 45, 984-994.	21.4	2,067
71	Neuropsychological Impairments in Schizophrenia and Psychotic Bipolar Disorder: Findings from the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Study. American Journal of Psychiatry, 2013, 170, 1275-1284.	7.2	320
72	New Ethical Issues for Genetic Counseling in Common Mental Disorders. American Journal of Psychiatry, 2013, 170, 968-976.	7.2	74

#	Article	IF	CITATIONS
73	Risk counselling for family members in bipolar disorder and schizophrenia. International Journal of Neuropsychopharmacology, 2013, 16, 713-714.	2.1	2
74	High Frequencies of De Novo CNVs in Bipolar Disorder and Schizophrenia. Neuron, 2011, 72, 951-963.	8.1	290
75	Accuracy of CNV Detection from GWAS Data. PLoS ONE, 2011, 6, e14511.	2.5	59
76	After GWAS: Searching for Genetic Risk for Schizophrenia and Bipolar Disorder. American Journal of Psychiatry, 2011, 168, 253-256.	7.2	175
77	Removing Batch Effects in Analysis of Expression Microarray Data: An Evaluation of Six Batch Adjustment Methods. PLoS ONE, 2011, 6, e17238.	2.5	427
78	Genetic associations with schizophrenia: Meta-analyses of 12 candidate genes. Schizophrenia Research, 2008, 104, 96-107.	2.0	154
79	The challenges of genetic tests for human behavior. Israel Journal of Psychiatry and Related Sciences, 2002, 39, 206-16.	0.5	0
80	Progress Toward Discovery of Susceptibility Genes for Bipolar Manic-Depressive Illness and Schizophrenia. CNS Spectrums, 2001, 6, 965-968, 977.	1.2	7
81	Fine mapping supports previous linkage evidence for a bipolar disorder susceptibility locus on 13q32. American Journal of Medical Genetics Part A, 2001, 105, 375-380.	2.4	33
82	Incorporation of molecular data and redefinition of phenotype: new approaches to genetic epidemiology of bipolar manic depressive illness and schizophrenia. Dialogues in Clinical Neuroscience, 2001, 3, 63-71.	3.7	2
83	Bipolar illness and schizophrenia as oligogenic diseases: implications for the future. Biological Psychiatry, 2000, 47, 240-244.	1.3	69
84	Closing in on Genes for Manic-Depressive Illness and Schizophrenia. Neuropsychopharmacology, 1998, 18, 233-242.	5.4	46
85	Maternal inheritance and chromosome 18 allele sharing in unilineal bipolar illness pedigrees. , 1996, 67, 202-207.		119
86	Reduction in temporal lobe size in siblings with schizophrenia: A magnetic resonance imaging study. Psychiatry Research - Neuroimaging, 1990, 35, 137-147.	1.8	98
87	Toward a Biology of Affective Disorders. Archives of General Psychiatry, 1971, 25, 1.	12.3	102