Ying Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9485910/publications.pdf

Version: 2024-02-01

	1.040	516710	794594
19	1,368	16	19
papers	citations	h-index	g-index
19	19	19	1424
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A Significantly Twisted Spirocyclic Phosphine Oxide as a Universal Host for High-Efficiency Full-Color Thermally Activated Delayed Fluorescence Diodes. Advanced Materials, 2016, 28, 3122-3130.	21.0	204
2	Electroluminescence from europium(III) complexes. Coordination Chemistry Reviews, 2015, 293-294, 228-249.	18.8	189
3	Multiphosphineâ€Oxide Hosts for Ultralowâ€Voltageâ€Driven Trueâ€Blue Thermally Activated Delayed Fluorescence Diodes with External Quantum Efficiency beyond 20%. Advanced Materials, 2016, 28, 479-485.	21.0	151
4	Highly Efficient and Colorâ€Stable Thermally Activated Delayed Fluorescence White Lightâ€Emitting Diodes Featured with Singleâ€Doped Single Emissive Layers. Advanced Materials, 2020, 32, e1906950.	21.0	104
5	Balanced Dual Emissions from Tridentate Phosphineâ€Coordinate Copper(I) Complexes toward Highly Efficient Yellow OLEDs. Advanced Materials, 2016, 28, 5975-5979.	21.0	94
6	Extremely condensing triplet states of DPEPO-type hosts through constitutional isomerization for high-efficiency deep-blue thermally activated delayed fluorescence diodes. Chemical Science, 2016, 7, 2870-2882.	7.4	92
7	Dibenzothiophene-Based Phosphine Oxide Host and Electron-Transporting Materials for Efficient Blue Thermally Activated Delayed Fluorescence Diodes through Compatibility Optimization. Chemistry of Materials, 2015, 27, 5131-5140.	6.7	89
8	Anomalous upconversion amplification induced by surface reconstruction in lanthanide sublattices. Nature Photonics, 2021, 15, 732-737.	31.4	77
9	Chargeâ€Transfer Exciton Manipulation Based on Hydrogen Bond for Efficient White Thermally Activated Delayed Fluorescence. Advanced Functional Materials, 2020, 30, 1908568.	14.9	63
10	High-efficiency blue thermally activated delayed fluorescence from donor–acceptor–donor systems ⟨i⟩via⟨ i⟩ the through-space conjugation effect. Chemical Science, 2019, 10, 5556-5567.	7.4	59
11	Highâ€Efficiency Blue Dualâ€Emissive Exciplex Boosts Fullâ€Radiative White Electroluminescence. Advanced Optical Materials, 2018, 6, 1800437.	7.3	53
12	Spatial exciton allocation strategy with reduced energy loss for high-efficiency fluorescent/phosphorescent hybrid white organic light-emitting diodes. Materials Horizons, 2017, 4, 641-648.	12.2	48
13	Ladder-like energy-relaying exciplex enables 100% internal quantum efficiency of white TADF-based diodes in a single emissive layer. Nature Communications, 2021, 12, 3640.	12.8	46
14	A "Si‣ocked―Phosphine Oxide Host with Suppressed Structural Relaxation for Highly Efficient Deepâ€Blue TADF Diodes. Advanced Optical Materials, 2016, 4, 522-528.	7.3	38
15	Enhancing Reverse Intersystem Crossing via Secondary Acceptors: toward Sky-Blue Fluorescent Diodes with 10-Fold Improved External Quantum Efficiency. ACS Applied Materials & Diversaces, 2019, 11, 4185-4192.	8.0	23
16	Highâ€Powerâ€Efficiency White Thermally Activated Delayed Fluorescence Diodes Based on Selectively Optimized Intermolecular Interactions. Advanced Functional Materials, 2020, 30, 2005165.	14.9	19
17	Variable Tap-Length LMS Algorithm with Adaptive Step Size. Circuits, Systems, and Signal Processing, 2017, 36, 2815-2827.	2.0	9
18	Phosphine Oxide Linkage Manipulating Trinuclear Iridium(III) Complex for Highâ€Efficiency Bilayer Nondoped Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2001105.	7.3	7

#	Article	IF	CITATIONS
19	Simple variable tapâ€length algorithm for highâ€noise environment. Electronics Letters, 2017, 53, 320-322.	1.0	3