Benlin He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9485674/publications.pdf

Version: 2024-02-01

		44069	66911
155	7,478	48	78
papers	citations	h-index	g-index
158 all docs	158 docs citations	158 times ranked	5796 citing authors

#	Article	IF	CITATIONS
1	Efficient interface engineering of N, N'-Dicyclohexylcarbodiimide for stable HTMs-free CsPbBr3 perovskite solar cells with 10.16%-efficiency. Chemical Engineering Journal, 2022, 428, 131950.	12.7	32
2	Hydrogen-Bonded Dopant-Free Hole Transport Material Enables Efficient and Stable Inverted Perovskite Solar Cells. CCS Chemistry, 2022, 4, 3084-3094.	7.8	37
3	Multifunctional interface modifier ammonium silicofluoride for efficient and stable all-inorganic CsPbBr3 perovskite solar cells. Chemical Engineering Journal, 2022, 431, 134193.	12.7	24
4	Polypyrroleâ€molybdenum sulfide complex as an efficient and transparent catalytic electrode for bifacial dye-sensitized solar cells. Catalysis Communications, 2022, 163, 106403.	3.3	12
5	A "double-sided tape―modifier bridging the TiO ₂ /perovskite buried interface for efficient and stable all-inorganic perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 6649-6661.	10.3	25
6	Reducing Energy Disorder for Efficient and Stable Snâ^'Pb Alloyed Perovskite Solar Cells Angewandte Chemie, 2022, 134, .	2.0	3
7	Reducing Energy Disorder for Efficient and Stable Snâ^'Pb Alloyed Perovskite Solar Cells Angewandte Chemie - International Edition, 2022, 61, .	13.8	32
8	Phase Control of Csâ€Pbâ€Br Derivatives to Suppress 0D Cs ₄ PbBr ₆ for Highâ€Efficiency and Stable Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. Small, 2022, 18, e2106323.	10.0	27
9	Universal Dynamic Liquid Interface for Healing Perovskite Solar Cells. Advanced Materials, 2022, 34, e2202301.	21.0	57
10	Ultraviolet filtration and defect passivation for efficient and photostable CsPbBr3 perovskite solar cells by interface engineering with ultraviolet absorber. Chemical Engineering Journal, 2021, 404, 126548.	12.7	29
11	Enhanced hole extraction by electron-rich alloys in all-inorganic CsPbBr ₃ perovskite solar cells. Chemical Communications, 2021, 57, 7577-7580.	4.1	14
12	Triâ€Brominated Perovskite Film Management and Multipleâ€Ionic Defect Passivation for Highly Efficient and Stable Solar Cells. Solar Rrl, 2021, 5, 2000819.	5.8	13
13	Dimensionality Control of SnO ₂ Films for Hysteresis-Free, All-Inorganic CsPbBr ₃ Perovskite Solar Cells with Efficiency Exceeding 10%. ACS Applied Materials & lnterfaces, 2021, 13, 11058-11066.	8.0	24
14	Multifunctional brominated graphene oxide boosted charge extraction for high-efficiency and stable all-inorganic CsPbBr3 perovskite solar cells. Chemical Engineering Journal, 2021, 412, 128727.	12.7	28
15	Achieving Concurrent High Energy Density and Efficiency in All-Polymer Layered Paraelectric/Ferroelectric Composites via Introducing a Moderate Layer. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27522-27532.	8.0	87
16	Asymmetric Trilayer Allâ€Polymer Dielectric Composites with Simultaneous High Efficiency and High Energy Density: A Novel Design Targeting Advanced Energy Storage Capacitors. Advanced Functional Materials, 2021, 31, 2100280.	14.9	179
17	Efficient Defect Passivation and Charge Extraction with Hexamethylenetetramine Interface Modification for Holeâ€Transporting Layersâ€Free CsPbBr ₃ Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100344.	5.8	8
18	Enhanced energy level alignment and hole extraction of carbon electrode for air-stable hole-transporting material-free CsPbBr3 perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 205, 110267.	6.2	43

#	Article	IF	CITATIONS
19	Interface Engineering of Imidazolium Ionic Liquids toward Efficient and Stable CsPbBr ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 4540-4548.	8.0	132
20	Enhanced Efficiency of Air-Stable CsPbBr ₃ Perovskite Solar Cells by Defect Dual Passivation and Grain Size Enlargement with a Multifunctional Additive. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 36092-36101.	8.0	62
21	Compositional Engineering of Chloride Ionâ€Doped CsPbBr 3 Halides for Highly Efficient and Stable Allâ€Inorganic Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000362.	5.8	26
22	Improved charge extraction through interface engineering for 10.12% efficiency and stable CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20987-20997.	10.3	42
23	Boosted hole extraction in all-inorganic CsPbBr3 perovskite solar cells by interface engineering using MoO2/N-doped carbon nanospheres composite. Solar Energy Materials and Solar Cells, 2020, 209, 110460.	6.2	27
24	Grain Enlargement and Defect Passivation with Melamine Additives for High Efficiency and Stable CsPbBr ₃ Perovskite Solar Cells. ChemSusChem, 2020, 13, 1834-1843.	6.8	62
25	Enhanced charge extraction in carbon-based all-inorganic CsPbBr3 perovskite solar cells by dual-function interface engineering. Electrochimica Acta, 2019, 328, 135102.	5.2	30
26	Advanced Modification of Perovskite Surfaces for Defect Passivation and Efficient Charge Extraction in Air-Stable CsPbBr ₃ Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 19286-19294.	6.7	51
27	Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr3 films with transition metal ions. Chemical Engineering Journal, 2019, 375, 121930.	12.7	82
28	Poly(3-hexylthiophene)/zinc phthalocyanine composites for advanced interface engineering of 10.03%-efficiency CsPbBr ₃ perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 12635-12644.	10.3	94
29	Using SnO2 QDs and CsMBr3 (M = Sn, Bi, Cu) QDs as Charge-Transporting Materials for 10.6%-Efficience All-Inorganic CsPbBr3 Perovskite Solar Cells with an Ultrahigh Open-Circuit Voltage of 1.610 V (Solar) Tj ETQq1 10	y 0 <i>5</i> 7. 8 4314	rgBT /Over
30	Co/Se and Ni/Se nanocomposite films prepared by magnetron sputtering as counter electrodes for dye-sensitized solar cells. Solar Energy, 2019, 180, 85-91.	6.1	34
31	Sonochemistry-assisted black/red phosphorus hybrid quantum dots for dye-sensitized solar cells. Journal of Power Sources, 2019, 410-411, 53-58.	7.8	33
32	Using SnO ₂ QDs and CsMBr ₃ (M = Sn, Bi, Cu) QDs as Chargeâ€Transporting Materials for 10.6%â€Efficiency Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells with an Ultrahigh Openâ€Circuit Voltage of 1.610 V. Solar Rrl, 2019, 3, 1800284.	5.8	84
33	Self-powered flexible monoelectrodes from graphene/reduced graphene oxide composite films to harvest rain energy. Journal of Alloys and Compounds, 2019, 776, 31-35.	5.5	9
34	Cubic carbon quantum dots for light-harvesters in mesoscopic solar cells. Electrochimica Acta, 2018, 275, 275-280.	5.2	26
35	Simplified Perovskite Solar Cell with 4.1% Efficiency Employing Inorganic CsPbBr ₃ as Light Absorber. Small, 2018, 14, e1704443.	10.0	113
36	Carbonâ€Electrodeâ€Tailored Allâ€Inorganic Perovskite Solar Cells To Harvest Solar and Waterâ€Vapor Energy. Angewandte Chemie - International Edition, 2018, 57, 5746-5749.	13.8	112

#	Article	IF	Citations
37	A porous ceramic membrane tailored high-temperature supercapacitor. Journal of Power Sources, 2018, 379, 60-67.	7.8	26
38	Highâ€Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency. Angewandte Chemie - International Edition, 2018, 57, 3787-3791.	13.8	404
39	Highâ€Purity Inorganic Perovskite Films for Solar Cells with 9.72 % Efficiency. Angewandte Chemie, 2018, 130, 3849-3853.	2.0	99
40	Selfâ€Powered Lowâ€Platinum Nanorod Alloy Monoelectrodes for Rain Energy Harvest. Energy Technology, 2018, 6, 1606-1609.	3.8	1
41	Carbonâ€Electrodeâ€Tailored Allâ€Inorganic Perovskite Solar Cells To Harvest Solar and Waterâ€Vapor Energy. Angewandte Chemie, 2018, 130, 5848-5851.	2.0	19
42	Alloyâ€Controlled Work Function for Enhanced Charge Extraction in Allâ€Inorganic CsPbBr ₃ Perovskite Solar Cells. ChemSusChem, 2018, 11, 1432-1437.	6.8	62
43	Harvest rain energy by polyaniline-graphene composite films. Renewable Energy, 2018, 125, 995-1002.	8.9	22
44	Bifunctional polyaniline electrode tailored hybridized solar cells for energy harvesting from sun and rain. Journal of Energy Chemistry, 2018, 27, 742-747.	12.9	11
45	Lanthanide Ions Doped CsPbBr ₃ Halides for HTMâ€Free 10.14%â€Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Openâ€Circuit Voltage of 1.594 V. Advanced Energy Materials, 2018, 8, 1802346.	19.5	387
46	Enhanced charge extraction with all-carbon electrodes for inorganic CsPbBr ₃ perovskite solar cells. Dalton Transactions, 2018, 47, 15283-15287.	3.3	28
47	Spray-assisted deposition of CsPbBr3 films in ambient air for large-area inorganic perovskite solar cells. Materials Today Energy, 2018, 10, 146-152.	4.7	57
48	Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells. Electrochimica Acta, 2018, 279, 84-90.	5.2	49
49	Efficiency enhancement of bifacial dye-sensitized solar cells through bi-tandem carbon quantum dots tailored transparent counter electrodes. Electrochimica Acta, 2018, 278, 204-209.	5.2	28
50	Hybridized dye-sensitized solar cells for persistent power generation free of sun illumination. Electrochimica Acta, 2018, 280, 181-190.	5.2	6
51	Transparent ternary alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells. Solar Energy, 2018, 170, 762-768.	6.1	22
52	9.13%-Efficiency and stable inorganic CsPbBr3 solar cells. Lead-free CsSnBr3-xlx quantum dots promote charge extraction. Journal of Power Sources, 2018, 399, 76-82.	7.8	105
53	Lattice Modulation of Alkali Metal Cations Doped Cs _{1â^'<i>x</i>} R <i></i> PbBr ₃ Halides for Inorganic Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800164.	5.8	154
54	A ceramic NiO/ZrO2 separator for high-temperature supercapacitor up to 140 °C. Journal of Power Sources, 2018, 400, 126-134.	7.8	34

#	Article	IF	Citations
55	Rain-responsive polypyrrole-graphene/PtCo electrodes for energy harvest. Electrochimica Acta, 2018, 285, 139-148.	5.2	6
56	Can dye-sensitized solar cells generate electricity in the dark?. Nano Energy, 2017, 33, 266-271.	16.0	40
57	Long persistence phosphor assisted all-weather solar cells. Electricity generation beyond sunny days. Chemical Communications, 2017, 53, 3209-3212.	4.1	19
58	Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells. ACS Nano, 2017, 11, 1540-1547.	14.6	155
59	Transparent molybdenum sulfide decorated polyaniline complex counter electrodes for efficient bifacial dye-sensitized solar cells. Solar Energy, 2017, 147, 470-478.	6.1	35
60	Mo incorporated W 18 O 49 nanofibers as robust electrocatalysts for high-efficiency hydrogen evolution. International Journal of Hydrogen Energy, 2017, 42, 14534-14546.	7.1	15
61	Robust electrocatalysts from metal doped W ₁₈ O ₄₉ nanofibers for hydrogen evolution. Chemical Communications, 2017, 53, 4323-4326.	4.1	19
62	Photoelectric conversion beyond sunny days: all-weather carbon quantum dot solar cells. Journal of Materials Chemistry A, 2017, 5, 2143-2150.	10.3	54
63	Biomass converted carbon quantum dots for all-weather solar cells. Electrochimica Acta, 2017, 257, 259-266.	5.2	53
64	Interfacial engineering of hybridized solar cells for simultaneously harvesting solar and rain energies. Journal of Materials Chemistry A, 2017, 5, 18551-18560.	10.3	9
65	Extra-high short-circuit current for bifacial solar cells in sunny and dark–light conditions. Chemical Communications, 2017, 53, 10046-10049.	4.1	7
66	A Solar Cell That Is Triggered by Sun and Rain. Angewandte Chemie, 2016, 128, 5329-5332.	2.0	22
67	A Solar Cell That Is Triggered by Sun and Rain. Angewandte Chemie - International Edition, 2016, 55, 5243-5246.	13.8	96
68	Platinum Alloy Tailored Allâ€Weather Solar Cells for Energy Harvesting from Sun and Rain. Angewandte Chemie - International Edition, 2016, 55, 14412-14416.	13.8	49
69	Carbide decorated carbon nanotube electrocatalyst for high-efficiency hydrogen evolution from seawater. RSC Advances, 2016, 6, 93267-93274.	3.6	33
70	An all-weather solar cell that can harvest energy from sunlight and rain. Nano Energy, 2016, 30, 818-824.	16.0	65
71	Counter electrodes from polymorphic platinum-nickel hollow alloys for high-efficiency dye-sensitized solar cells. Journal of Power Sources, 2016, 328, 185-194.	7.8	21
72	Graphene enabled all-weather solar cells for electricity harvest from sun and rain. Journal of Materials Chemistry A, 2016, 4, 13235-13241.	10.3	38

#	Article	IF	CITATIONS
73	Room-temperature fabrication of multi-deformable perovskite solar cells made in a three-dimensional gel framework. RSC Advances, 2016, 6, 82933-82940.	3.6	7
74	Platinum Alloy Tailored Allâ€Weather Solar Cells for Energy Harvesting from Sun and Rain. Angewandte Chemie, 2016, 128, 14624-14628.	2.0	10
75	Enhanced light harvesting of TiO2/La0.95Tb0.05PO4 photoanodes for dye-sensitized solar cells. Materials Chemistry and Physics, 2016, 173, 340-346.	4.0	6
76	Spatial confinement growth of perovskite nanocrystals for ultra-flexible solar cells. RSC Advances, 2016, 6, 59429-59437.	3.6	3
77	Cylindrical dye-sensitized solar cells with high efficiency and stability over time and incident angle. Chemical Communications, 2016, 52, 3528-3531.	4.1	13
78	ZnO nanorods assisted Ni1.1Pt and Co3.9Pt alloy microtube counter electrodes for efficient dye-sensitized solar cells. Electrochimica Acta, 2016, 190, 903-911.	5.2	10
79	Robust electrocatalysts from an alloyed Pt–Ru–M (M = Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting. Journal of Materials Chemistry A, 2016, 4, 6513-6520.	10.3	118
80	Dissolution-resistant platinum alloy counter electrodes for stable dye-sensitized solar cells. Electrochimica Acta, 2016, 190, 409-418.	5.2	22
81	Platinum alloy decorated polyaniline counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2016, 190, 76-84.	5.2	18
82	Counter electrode electrocatalysts from binary Pd–Co alloy nanoparticles for dye-sensitized solar cells. Solar Energy, 2016, 124, 68-75.	6.1	15
83	Alloying of platinum and molybdenum for transparent counter electrodes. A strategy of enhancing power output for bifacial dye-sensitized solar cells. RSC Advances, 2015, 5, 51600-51607.	3.6	16
84	Solid-state dye-sensitized solar cells from poly(ethylene oxide)/polyaniline electrolytes with catalytic and hole-transporting characteristics. Journal of Materials Chemistry A, 2015, 3, 5368-5374.	10.3	53
85	Costâr effective alloy counter electrodes as a new avenue for highâr efficiency dyeâr sensitized solar cells. Electrochimica Acta, 2015, 158, 397-402.	5.2	29
86	Cost-effective, transparent iron selenide nanoporous alloy counter electrode for bifacial dye-sensitized solar cell. Journal of Power Sources, 2015, 282, 79-86.	7.8	47
87	Efficient dye-sensitized solar cells from curved silicate microsheet caged TiO 2 photoanodes. An avenue of enhancing light harvesting. Electrochimica Acta, 2015, 178, 18-24.	5.2	18
88	Recent advances in critical materials for quantum dot-sensitized solar cells: a review. Journal of Materials Chemistry A, 2015, 3, 17497-17510.	10.3	158
89	Graphene-incorporated quasi-solid-state dye-sensitized solar cells. RSC Advances, 2015, 5, 43402-43407.	3.6	10
90	A dye-sensitized solar cell having polyaniline species in each component with 3.1%-efficiency. Journal of Power Sources, 2015, 284, 178-185.	7.8	23

#	Article	IF	Citations
91	Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes. Journal of Power Sources, 2015, 284, 349-354.	7.8	44
92	Toward elevated light harvesting: efficient dye-sensitized solar cells with titanium dioxide/silica photoanodes. RSC Advances, 2015, 5, 46260-46266.	3.6	7
93	Multifunctional graphene incorporated polyacrylamide conducting gel electrolytes for efficient quasi-solid-state quantum dot-sensitized solar cells. Journal of Power Sources, 2015, 284, 369-376.	7.8	40
94	All-solid-state quantum dot-sensitized solar cell from plastic crystal electrolyte. RSC Advances, 2015, 5, 33463-33467.	3.6	17
95	Dissolution Engineering of Platinum Alloy Counter Electrodes in Dyeâ€5ensitized Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 11448-11452.	13.8	168
96	Recent advances in alloy counter electrodes for dye-sensitized solar cells. A critical review. Electrochimica Acta, 2015, 178, 886-899.	5.2	104
97	Bifacial quantum dot-sensitized solar cells with transparent cobalt selenide counter electrodes. Journal of Power Sources, 2015, 278, 183-189.	7.8	19
98	Titanium dioxide/calcium fluoride nanocrystallite for efficient dye-sensitized solar cell. A strategy of enhancing light harvest. Journal of Power Sources, 2015, 275, 175-180.	7.8	35
99	7.35% Efficiency rear-irradiated flexible dye-sensitized solar cells by sealing liquid electrolyte in a groove. Chemical Communications, 2015, 51, 491-494.	4.1	27
100	Bifacial dye-sensitized solar cells from covalent-bonded polyaniline–multiwalled carbon nanotube complex counter electrodes. Journal of Power Sources, 2015, 275, 489-497.	7.8	42
101	Conducting gel electrolytes with microporous structures for efficient quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2015, 273, 1148-1155.	7.8	36
102	An avenue of sealing liquid electrolyte in flexible dye-sensitized solar cells. Journal of Power Sources, 2015, 274, 304-309.	7.8	18
103	Insights on tunneled electrons for electrical and photoelectric behaviors in conducting multilayer films. Polymer Engineering and Science, 2015, 55, 107-112.	3.1	1
104	An avenue of expanding triiodide reduction and shortening charge diffusion length in solid-state dye-sensitized solar cells. Journal of Power Sources, 2015, 273, 180-184.	7.8	3
105	Growth of hexagonal polyaniline fibers with polyacrylamide pendants. Polymer Composites, 2014, 35, 253-262.	4.6	1
106	Full-ionic liquid gel electrolytes: Enhanced photovoltaic performances in dye-sensitized solar cells. Journal of Power Sources, 2014, 264, 83-91.	7.8	36
107	Low-cost CoPt alloy counter electrodes for efficient dye-sensitized solar cells. Journal of Power Sources, 2014, 260, 180-185.	7.8	63
108	H3PO4 imbibed polyacrylamide-graft-chitosan frameworks for high-temperature proton exchange membranes. Journal of Power Sources, 2014, 249, 277-284.	7.8	20

#	Article	IF	Citations
109	A simple approach of enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells by integrating conducting polyaniline into electrical insulating gel electrolyte. Journal of Power Sources, 2014, 245, 468-474.	7.8	37
110	Solar photocatalysts from Gd–La codoped TiO2 nanoparticles. Journal of Materials Science, 2014, 49, 3371-3378.	3.7	11
111	Quasi-solid-state dye-sensitized solar cells from hydrophobic poly(hydroxyethyl) Tj ETQq1 1 0.784314 rgBT /Over	lock 10 Tt	f 50 662 Td (
112	Enhanced photovoltaic performances of quasi-solid-state dye-sensitized solar cells using a novel conducting gel electrolyte. Journal of Power Sources, 2014, 248, 923-930.	7.8	64
113	Employment of ionic liquid-imbibed polymer gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2014, 248, 816-821.	7.8	44
114	Insights of close contact between polyaniline and FTO substrate for enhanced photovoltaic performances of dye-sensitized solar cells. Electrochimica Acta, 2014, 125, 163-169.	5.2	22
115	Incorporation of H3PO4 into three-dimensional polyacrylamide-graft-starch hydrogel frameworks for robust high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39, 4447-4458.	7.1	21
116	Multifunctional graphene incorporated conducting gel electrolytes in enhancing photovoltaic performances of quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2014, 260, 225-232.	7.8	56
117	Transmission booster from SiO2 incorporated TiO2 crystallites: Enhanced conversion efficiency in dye-sensitized solar cells. Electrochimica Acta, 2014, 134, 281-286.	5.2	39
118	Efficient quasi-solid-state dye-sensitized solar cells employing polyaniline and polypyrrole incorporated microporous conducting gel electrolytes. Journal of Power Sources, 2014, 254, 98-105.	7.8	59
119	Transmission enhanced photoanodes for efficient dye-sensitized solar cells. Electrochimica Acta, 2014, 125, 646-651.	5.2	52
120	Self-assembly of graphene oxide/polyaniline multilayer counter electrodes for efficient dye-sensitized solar cells. Electrochimica Acta, 2014, 121, 136-142.	5.2	30
121	Efficient dye-sensitized solar cells from polyaniline–single wall carbon nanotube complex counter electrodes. Journal of Materials Chemistry A, 2014, 2, 3119.	10.3	103
122	Rapid charge-transfer in polypyrrole–single wall carbon nanotube complex counter electrodes: Improved photovoltaic performances of dye-sensitized solar cells. Journal of Power Sources, 2014, 256, 170-177.	7.8	86
123	Solid-state electrolytes from polysulfide integrated polyvinylpyrrolidone for quantum dot-sensitized solar cells. RSC Advances, 2014, 4, 60478-60483.	3.6	18
124	Transparent Metal Selenide Alloy Counter Electrodes for Highâ€Efficiency Bifacial Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 14569-14574.	13.8	231
125	Enhanced dye illumination in dye-sensitized solar cells using TiO ₂ /GeO ₂ photo-anodes. Journal of Materials Chemistry A, 2014, 2, 12459.	10.3	48
126	Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency. Nanoscale, 2014, 6, 12601-12608.	5.6	124

#	Article	IF	Citations
127	Enhanced proton conductivity from phosphoric acidâ€incorporated 3D polyacrylamideâ€graftâ€starch hydrogel materials for highâ€temperature proton exchange membranes. Journal of Applied Polymer Science, 2014, 131, .	2.6	5
128	Microporous gel electrolyte for quasi-solid-state dye-sensitized solar cell. Polymer Engineering and Science, 2014, 54, 2531-2535.	3.1	5
129	Low-Cost Counter Electrodes From CoPt Alloys For Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells.	8.0	96
130	Efficient In2S3 Quantum dotâ^'sensitized Solar Cells: A Promising Power Conversion Efficiency of 1.30%. Electrochimica Acta, 2014, 139, 381-385.	5.2	42
131	Counter electrodes from binary ruthenium selenide alloys for dye-sensitized solar cells. Journal of Power Sources, 2014, 271, 108-113.	7.8	32
132	Poly(vinylidene fluoride)–implanted cobalt–platinum alloy counter electrodes for dye–sensitized solar cells. Electrochimica Acta, 2014, 147, 209-215.	5.2	11
133	Bifacial dye-sensitized solar cells with enhanced rear efficiency and power output. Nanoscale, 2014, 6, 15127-15133.	5.6	45
134	Three-dimensional hydrogel frameworks for high-temperature proton exchange membrane fuel cells. Journal of Materials Science, 2014, 49, 5481-5491.	3.7	14
135	Efficient quasi-solid-state dye-sensitized solar cells from graphene incorporated conducting gel electrolytes. Journal of Materials Chemistry A, 2014, 2, 2814.	10.3	60
136	Platinumâ€Free Binary Coâ€Ni Alloy Counter Electrodes for Efficient Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2014, 53, 10799-10803.	13.8	205
137	Platinum-free binary Fe–Co nanofiber alloy counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2014, 268, 56-62.	7.8	42
138	Complexation of polyaniline and graphene for efficient counter electrodes in dye-sensitized solar cells: Enhanced charge transfer ability. Journal of Power Sources, 2014, 256, 8-13.	7.8	71
139	Efficient dye-sensitized solar cell from spiny polyaniline nanofiber counter electrode. Materials Letters, 2014, 119, 28-31.	2.6	12
140	PtRu nanofiber alloy counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2014, 258, 117-121.	7.8	66
141	Counter electrodes from polyanilineâ^'carbon nanotube complex/graphene oxide multilayers for dye-sensitized solar cell application. Electrochimica Acta, 2014, 125, 510-515.	5.2	32
142	Robust conducting gel electrolytes for efficient quasi-solid-state dye-sensitized solar cells. Electrochimica Acta, 2014, 137, 57-64.	5.2	27
143	Robust Polyaniline–Graphene Complex Counter Electrodes For Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 8230-8236.	8.0	66
144	Counter electrodes from polyanilineâ "graphene complex/graphene oxide multilayers for dyeâ "sensitized solar cells. Electrochimica Acta, 2014, 137, 175-182.	5.2	29

#	Article	IF	Citations
145	Mesoporous TiO2 anodes for efficient dye-sensitized solar cells: An efficiency of 9.86% under one sun illumination. Journal of Power Sources, 2014, 267, 445-451.	7.8	74
146	Peculiar electrical and photoelectric behaviors in conducting multilayers: Insights into accumulative charge tunneling. Journal of Applied Polymer Science, 2014, 131, .	2.6	0
147	Preparation and electrochemical properties of polyâ€2,5â€dihydroxyaniline/activated carbon composite electrode in organic electrolyte. Journal of Applied Polymer Science, 2013, 127, 4672-4680.	2.6	9
148	Imbibition of polypyrrole into three-dimensional poly(hydroxyethyl methacrylate/glycerol) gel electrolyte for robust quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 8055.	10.3	57
149	Enhanced photocatalytic activity from Gd, La codoped TiO2 nanotube array photocatalysts under visible-light irradiation. Applied Surface Science, 2013, 284, 837-842.	6.1	42
150	Insights on the accumulation of charge carriers for enhanced electrical and photoelectric behaviors in conducting multilayer films. RSC Advances, 2013, 3, 25190.	3.6	3
151	Quasi-solid-state dye-sensitized solar cell from polyaniline integrated poly(hexamethylene) Tj ETQq1 1 0.784314 5326.	rgBT /Ove 10.3	erlock 10 Tf 5 66
152	Application of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate in polymer heterojunction solar cells. Journal of Materials Science, 2013, 48, 3528-3534.	3.7	8
153	Preparation and electrochemical properties of polyaniline/α-RuCl ₃ . <i>x</i> H ₂ O composites for supercapacitor. Polymer Composites, 2013, 34, 2142-2147.	4.6	2
154	Corrosion behavior of anodic oxidized TiO2 film in seawater. Journal of Ocean University of China, 2010, 9, 376-380.	1.2	1
155	EIS analysis of hydrophobic and hydrophilicTiO2 film. Electrochimica Acta, 2008, 54, 611-615.	5.2	10