## Stephan P A Sauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9484998/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IF                         | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|
| 1  | A tale of two vectors: A Lanczos algorithm for calculating RPA mean excitation energies. Journal of<br>Chemical Physics, 2022, 156, 014102.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0                        | 1         |
| 2  | Extending NMR Quantum Computation Systems by Employing Compounds with Several Heavy Metals as Qubits. Magnetochemistry, 2022, 8, 47.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4                        | 5         |
| 3  | Calculation of mean excitation energies of 3d-elements and their cations. Molecular Physics, 2021, 119, e1823508.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.7                        | 4         |
| 4  | Estimating the accuracy of calculated electron paramagnetic resonance hyperfine couplings for a<br>lytic polysaccharide monooxygenase. Computational and Structural Biotechnology Journal, 2021, 19,<br>555-567.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.1                        | 11        |
| 5  | Free Molecule Studies by Perturbed <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:mi>Î<sup>3</sup></mml:mi><mml:mtext>â^`</mml:mtext><mml:mi>Î<sup>3</sup>Angular Correlation: A New Path to Accurate Nuclear Quadrupole Moments. Physical Review Letters,<br/>2021. 126. 103001.</mml:mi></mml:mrow></mml:math>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nrow> <td>ml:math&gt;</td> | ml:math>  |
| 6  | A Density Functional Theory Study of Optical Rotation in Some Aziridine and Oxirane Derivatives.<br>ChemPhysChem, 2021, 22, 764-774.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.1                        | 2         |
| 7  | Azoâ€hydrazone molecular switches: Synthesis and NMR conformational investigation. Magnetic<br>Resonance in Chemistry, 2021, 59, 1116-1125.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.9                        | 5         |
| 8  | A QM/MM study of the conformation stability and electronic structure of the photochromic<br>switches derivatives of DHA/VHF in acetonitrile solution. Spectrochimica Acta - Part A: Molecular and<br>Biomolecular Spectroscopy, 2021, 251, 119434.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.9                        | 10        |
| 9  | Benchmarking Correlated Methods for Static and Dynamic Polarizabilities: The T145 Data Set Evaluated with RPA, RPA(D), HRPA, HRPA(D), SOPPA, SOPPA(CC2), SOPPA(CCSD), CC2, and CCSD. Journal of Physical Chemistry A, 2021, 125, 3785-3792.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.5                        | 5         |
| 10 | The best <scp>density functional theory</scp> functional for the prediction of <sup>1</sup> H and <sup>13</sup> C chemical shifts of protonated alkylpyrroles. Journal of Computational Chemistry, 2021, 42, 1248-1262.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3                        | 5         |
| 11 | Importance of Relativistic Effects for Carbon as an NMR Reporter Nucleus in Carbide-Bridged [RuCPt]<br>Complexes. Organometallics, 2021, 40, 1443-1453.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.3                        | 4         |
| 12 | The augâ€ccâ€pVTZâ€J basis set for the <i>p</i> â€block fourthâ€row elements Ga, Ge, As, Se, and Br. Magnetic<br>Resonance in Chemistry, 2021, 59, 1134-1145.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.9                        | 6         |
| 13 | Prediction of the standard potentials for one-electron oxidation of <i>N </i> , <i <="" i="" n="">, <i <="" li="" n="">, <i <="" li="" n="">, <i <="" li="" n="">, <li>N</li></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i> | 2.8                        | 3         |
| 14 | Benchmarking anisotropic polarizabilities for 14 (hetero)â€aromatic molecules at <scp>RPA</scp> , <scp>RPA</scp> (D), <scp>HRPA</scp> , (scp>RPA, (scp>SOPPA, (scp>SOPPA), <scp>SOPPA</scp> ), <scp>CC2</scp> , <scp>CCSD</scp> ), <scp>CC2</scp> , <scp>CCSD</scp> and <scp>CC3</scp> levels. International Journal of Quantum Chemistry, 2021, 121,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0                        | 3         |
| 15 | e26593.<br>On the Unexpected Accuracy of the M06L Functional in the Calculation of<br><sup>1</sup> <i>J</i> <sub>FC</sub> Spinâ€"Spin Coupling Constants. Journal of Chemical Theory and<br>Computation, 2021, 17, 7712-7723.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.3                        | 10        |
| 16 | Noniterative Doubles Corrections to the Random Phase and Higher Random Phase Approximations:<br>Singlet and Triplet Excitation Energies. Journal of Computational Chemistry, 2020, 41, 43-55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.3                        | 17        |
| 17 | NMR parameters of FNNF as a test for coupled-cluster methods: CCSDT shielding and CC3 spin–spin coupling. Physical Chemistry Chemical Physics, 2020, 22, 21350-21359.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.8                        | 10        |
| 18 | Benchmarking doubles-corrected random-phase approximation methods for frequency dependent<br>polarizabilities: Aromatic molecules calculated at the RPA, HRPA, RPA(D), HRPA(D), and SOPPA levels.<br>Journal of Chemical Physics, 2020, 152, 234101.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0                        | 10        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | RPA(D) and HRPA(D): calculation of carbon–carbon spin–spin coupling constants for saturated cycloalkanes. Molecular Physics, 2020, 118, .                                                                                          | 1.7 | 9         |
| 20 | Interfacial tension in water/n-decane/naphthenic acid systems predicted by a combined COSMO-RS theory and pendant drop experimental study. Molecular Physics, 2020, 118, e1764645.                                                 | 1.7 | 3         |
| 21 | Dalton Project: A Python platform for molecular- and electronic-structure simulations of complex systems. Journal of Chemical Physics, 2020, 152, 214115.                                                                          | 3.0 | 45        |
| 22 | Enhancing NMR Quantum Computation by Exploring Heavy Metal Complexes as Multiqubit Systems: A<br>Theoretical Investigation. Journal of Physical Chemistry A, 2020, 124, 4946-4955.                                                 | 2.5 | 12        |
| 23 | On the relationship between bond correction factors and elemental mean excitation energies.<br>Nuclear Instruments & Methods in Physics Research B, 2020, 474, 6-9.                                                                | 1.4 | Ο         |
| 24 | Bond correction factors and their applications to the calculation of molecular mean excitation energies. Nuclear Instruments & Methods in Physics Research B, 2020, 468, 28-36.                                                    | 1.4 | 2         |
| 25 | The Second-Order-Polarization-Propagator-Approximation (SOPPA) in a four-component spinor basis.<br>Journal of Chemical Physics, 2020, 152, 134113.                                                                                | 3.0 | 16        |
| 26 | Benchmarking Correlated Methods for Frequency-Dependent Polarizabilities: Aromatic Molecules with the CC3, CCSD, CC2, SOPPA, SOPPA(CC2), and SOPPA(CCSD) Methods. Journal of Chemical Theory and Computation, 2020, 16, 3006-3018. | 5.3 | 10        |
| 27 | Computational Prediction of <sup>1</sup> H and <sup>13</sup> C NMR Chemical Shifts for Protonated Alkylpyrroles: Electron Correlation and Not Solvation is the Salvation. ChemPhysChem, 2019, 20, 78-91.                           | 2.1 | 15        |
| 28 | Bound and continuum state contributions to dipole oscillator strength sum rules: Total and orbital<br>mean excitation energies for cations of C, F, Si, and Cl. Advances in Quantum Chemistry, 2019, 80,<br>127-146.               | 0.8 | 3         |
| 29 | Calculation of mean excitation energies. Advances in Quantum Chemistry, 2019, 80, 225-245.                                                                                                                                         | 0.8 | 10        |
| 30 | Determining short-lived solid forms during phase transformations using molecular dynamics.<br>CrystEngComm, 2019, 21, 4020-4024.                                                                                                   | 2.6 | 16        |
| 31 | Test of the validity of Bragg's rule for mean excitation energies of small molecules and ions. Nuclear<br>Instruments & Methods in Physics Research B, 2019, 444, 112-116.                                                         | 1.4 | 6         |
| 32 | Mean excitation energies of singly charged atomic anions with Z ≤8. Journal of Physics B: Atomic,<br>Molecular and Optical Physics, 2019, 52, 095004.                                                                              | 1.5 | 5         |
| 33 | Entropy/Enthalpy Compensation in Anion Binding: Biotin[6]uril and<br>Biotin- <scp>l</scp> -sulfoxide[6]uril Reveal Strong Solvent Dependency. Journal of Organic<br>Chemistry, 2019, 84, 2577-2584.                                | 3.2 | 23        |
| 34 | Through-space spin–spin coupling constants involving fluorine: benchmarking DFT functionals.<br>Molecular Physics, 2019, 117, 1469-1480.                                                                                           | 1.7 | 18        |
| 35 | On the convergence of the ccJ-pVXZ and pcJ-n basis sets in CCSD calculations of nuclear spin–spin coupling constants: some difficult cases. Theoretical Chemistry Accounts, 2018, 137, 1.                                          | 1.4 | 14        |
| 36 | Theoretical study of the NMR chemical shift of Xe in supercritical condition. Journal of Molecular<br>Modeling, 2018, 24, 62.                                                                                                      | 1.8 | 3         |

| #  | Article                                                                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Frontispiece: Relativistic DFT Calculations of Hyperfine Coupling Constants in 5d Hexafluorido<br>Complexes: [ReF6 ]2â^' and [IrF6 ]2â^'. Chemistry - A European Journal, 2018, 24, .                                                                                                                                       | 3.3 | 1         |
| 38 | Relativistic DFT Calculations of Hyperfine Coupling Constants in 5d Hexafluorido Complexes:<br>[ReF <sub>6</sub> ] <sup>2â^'</sup> and [IrF <sub>6</sub> ] <sup>2â^'</sup> . Chemistry - A European<br>Journal, 2018, 24, 5124-5133.                                                                                        | 3.3 | 16        |
| 39 | Direct observation of Mg <sup>2+</sup> complexes in ionic liquid solutions by <sup>31</sup> Mg β-NMR spectroscopy. Dalton Transactions, 2018, 47, 14431-14435.                                                                                                                                                              | 3.3 | 12        |
| 40 | RPA(D) and HRPA(D): Two new models for calculations of NMR indirect nuclear spin–spin coupling constants. Journal of Computational Chemistry, 2018, 39, 2647-2666.                                                                                                                                                          | 3.3 | 21        |
| 41 | The influence of relativistic effects on nuclear magnetic resonance spin–spin coupling constant<br>polarizabilities of H <sub>2</sub> O <sub>2</sub> , H <sub>2</sub> S <sub>2</sub> ,<br>H <sub>2</sub> Se <sub>2</sub> , and H <sub>2</sub> Te <sub>2</sub> . Journal of Computational<br>Chemistry, 2018, 39, 2589-2600. | 3.3 | 7         |
| 42 | Analysis of the interactions in FCCF:(H2O) and FCCF:(H2O)2 complexes through the study of their indirect spin–spin coupling constants. Molecular Physics, 2018, 116, 2396-2405.                                                                                                                                             | 1.7 | 8         |
| 43 | A Physical Model of the Proton Radiation Belts of Jupiter inside Europa's Orbit. Journal of Geophysical<br>Research: Space Physics, 2018, 123, 3512-3532.                                                                                                                                                                   | 2.4 | 30        |
| 44 | Z-dependence of mean excitation energies for second and third row atoms and their ions. Journal of Chemical Physics, 2018, 148, 174307.                                                                                                                                                                                     | 3.0 | 13        |
| 45 | Development of polarization consistent basis sets for spin-spin coupling constant calculations for the atoms Li, Be, Na, and Mg. Journal of Chemical Physics, 2018, 149, 044117.                                                                                                                                            | 3.0 | 22        |
| 46 | The role of explicit solvent molecules in the calculation of NMR chemical shifts of glycine in water.<br>Theoretical Chemistry Accounts, 2018, 137, 1.                                                                                                                                                                      | 1.4 | 16        |
| 47 | Azadioxatriangulenium and Diazaoxatriangulenium: Quantum Yields and Fundamental Photophysical<br>Properties. ACS Omega, 2017, 2, 193-203.                                                                                                                                                                                   | 3.5 | 29        |
| 48 | Quadrupole moments of Cd and Zn nuclei: When solid-state, molecular, atomic, and nuclear theory meet. Europhysics Letters, 2017, 117, 62001.                                                                                                                                                                                | 2.0 | 21        |
| 49 | Mean excitation energies for molecular ions. Nuclear Instruments & Methods in Physics Research B, 2017, 394, 73-80.                                                                                                                                                                                                         | 1.4 | 12        |
| 50 | Importance of Triples Contributions to NMR Spin–Spin Coupling Constants Computed at the CC3 and CCSDT Levels. Journal of Chemical Theory and Computation, 2017, 13, 696-709.                                                                                                                                                | 5.3 | 41        |
| 51 | Molecular Switching in Confined Spaces: Effects of Encapsulating the DHA/VHF Photoâ€Switch in<br>Cucurbiturils. Chemistry - A European Journal, 2017, 23, 17010-17016.                                                                                                                                                      | 3.3 | 23        |
| 52 | On the convergence of zero-point vibrational corrections to nuclear shieldings and shielding anisotropies towards the complete basis set limit in water. Molecular Physics, 2017, 115, 144-160.                                                                                                                             | 1.7 | 19        |
| 53 | Continuum Contributions to Dipole Oscillator-Strength Sum Rules for Hydrogen in Finite Basis Sets.<br>Advances in Quantum Chemistry, 2017, 75, 229-241.                                                                                                                                                                     | 0.8 | 8         |
| 54 | Calculation of dipole polarizability derivatives of adamantane and their use in electron scattering computations. European Physical Journal D, 2016, 70, 1.                                                                                                                                                                 | 1.3 | 5         |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Effect of Solvation on the Radiation Damage Rate Constants for Adenine. ChemPhysChem, 2016, 17, 3086-3095.                                                                                                                                                | 2.1 | 5         |
| 56 | Spinâ€orbit <scp>ZORA</scp> and fourâ€component <scp>D</scp> irac– <scp>C</scp> oulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers. Journal of Computational Chemistry, 2016, 37, 395-403. | 3.3 | 14        |
| 57 | DFT and experimental studies on structure and spectroscopic parameters of 3,6-diiodo-9-ethyl-9H-carbazole. Structural Chemistry, 2016, 27, 199-207.                                                                                                           | 2.0 | 12        |
| 58 | Ligand Sphere Conversions in Terminal Carbide Complexes. Organometallics, 2016, 35, 100-105.                                                                                                                                                                  | 2.3 | 20        |
| 59 | Rovibrational and Temperature Effects in Theoretical Studies of NMR Parameters. New Developments in NMR, 2016, , 218-266.                                                                                                                                     | 0.1 | 23        |
| 60 | On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants. Journal of Chemical Physics, 2015, 143, 244107.                                                         | 3.0 | 3         |
| 61 | Insight into the Mechanism of the Initial Reaction of an OH Radical with DNA/RNA Nucleobases: A<br>Computational Investigation of Radiation Damage. Chemistry - A European Journal, 2015, 21, 17786-17799.                                                    | 3.3 | 18        |
| 62 | SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons. AIP Conference Proceedings, 2015, , .                                                                                                              | 0.4 | 13        |
| 63 | The Mean Excitation Energy of Atomic lons. Advances in Quantum Chemistry, 2015, , 29-40.                                                                                                                                                                      | 0.8 | 14        |
| 64 | Kinetics and Thermodynamics of the Reaction between the <sup>•</sup> OH Radical and Adenine: A<br>Theoretical Investigation. Journal of Physical Chemistry A, 2015, 119, 6516-6527.                                                                           | 2.5 | 21        |
| 65 | Molecular modeling and experimental studies on structure and NMR parameters of<br>9-benzyl-3,6-diiodo-9H-carbazole. Structural Chemistry, 2015, 26, 997-1006.                                                                                                 | 2.0 | 18        |
| 66 | Exploring the relationship between the conformation and pK <sub>a</sub> : can a pK <sub>a</sub> value be used to determine the conformational equilibrium?. Organic and Biomolecular Chemistry, 2015, 13, 3116-3121.                                          | 2.8 | 13        |
| 67 | Performance of SOPPA-based methods in the calculation of vertical excitation energies and oscillator strengths. Molecular Physics, 2015, 113, 2026-2045.                                                                                                      | 1.7 | 31        |
| 68 | Anion binding by biotin[6]uril in water. Organic and Biomolecular Chemistry, 2015, 13, 369-373.                                                                                                                                                               | 2.8 | 76        |
| 69 | Optimizing the Structure of Tetracyanoplatinate (II): A Comparison of Relativistic Density Functional<br>Theory Methods. Current Inorganic Chemistry, 2014, 3, 213-219.                                                                                       | 0.2 | 7         |
| 70 | On the Use of Locally Dense Basis Sets in the Calculation of EPR Hyperfine Couplings: A Study on<br>Model Systems for Bio-Inorganic Fe and Co Complexes. Current Inorganic Chemistry, 2014, 3, 270-283.                                                       | 0.2 | 6         |
| 71 | Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane. Journal of Chemical Physics, 2014, 141, 151101.                                  | 3.0 | 8         |
| 72 | The Second-Order Polarization Propagator Approximation (SOPPA) method coupled to the polarizable continuum model. Computational and Theoretical Chemistry, 2014, 1040-1041, 54-60.                                                                            | 2.5 | 9         |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The <scp>D</scp> alton quantum chemistry program system. Wiley Interdisciplinary Reviews:<br>Computational Molecular Science, 2014, 4, 269-284.                                                                              | 14.6 | 1,166     |
| 74 | Coupled cluster calculations of mean excitation energies of the noble gas atoms He, Ne and Ar and of the H2molecule. Molecular Physics, 2014, 112, 751-761.                                                                  | 1.7  | 12        |
| 75 | On the transferability of atomic contributions to the optical rotatory power of hydrogen peroxide, methyl hydroperoxide and dimethyl peroxide. Molecular Physics, 2014, 112, 1624-1632.                                      | 1.7  | 3         |
| 76 | First example of a high-level correlated calculation of the indirect spin–spin coupling constants<br>involving tellurium: tellurophene and divinyl telluride. Physical Chemistry Chemical Physics, 2013, 15,<br>13101-13107. | 2.8  | 30        |
| 77 | Failures of TDDFT in describing the lowest intramolecular charge-transfer excitation in <i>para</i> -nitroaniline. Molecular Physics, 2013, 111, 1235-1248.                                                                  | 1.7  | 79        |
| 78 | On the Determination of the Mean Excitation Energy of Water. Advances in Quantum Chemistry, 2013, 65, 63-77.                                                                                                                 | 0.8  | 14        |
| 79 | Halogen effect on structure and <sup>13</sup> C NMR chemical shift of 3,6â€disubstitutedâ€ <i>N</i> â€alkyl<br>carbazoles. Magnetic Resonance in Chemistry, 2013, 51, 630-635.                                               | 1.9  | 27        |
| 80 | Magnetic interactions in oxide-bridged dichromium(III) complexes. Computational determination of the importance of non-bridging ligands. Inorganica Chimica Acta, 2013, 396, 72-77.                                          | 2.4  | 10        |
| 81 | Estimation of isotropic nuclear magnetic shieldings in the CCSD(T) and MP2 complete basis set limit using affordable correlation calculations. Magnetic Resonance in Chemistry, 2013, 51, 482-489.                           | 1.9  | 24        |
| 82 | Validating and Analyzing EPR Hyperfine Coupling Constants with Density Functional Theory. Journal of Chemical Theory and Computation, 2013, 9, 2380-2388.                                                                    | 5.3  | 29        |
| 83 | Effective potential energy curves of the ground electronic state of CH+. Journal of Chemical Physics, 2013, 138, 024315.                                                                                                     | 3.0  | 19        |
| 84 | Relation between properties of long-range diatomic bound states. Physical Review A, 2013, 87, .                                                                                                                              | 2.5  | 10        |
| 85 | Quantum-dynamical Modeling of the Rydberg to Valence Excited-State Internal Conversion in Cyclobutanone and Cyclopentanone. EPJ Web of Conferences, 2013, 41, 02033.                                                         | 0.3  | Ο         |
| 86 | Symmetry, vibrational energy redistribution and vibronic coupling: The internal conversion processes of cycloketones. Journal of Chemical Physics, 2012, 137, 22A522.                                                        | 3.0  | 17        |
| 87 | A comparison of density functional theory and coupled cluster methods for the calculation of electric dipole polarizability gradients of methane. AIP Conference Proceedings, 2012, , .                                      | 0.4  | 13        |
| 88 | Fully relativistic coupled cluster and DFT study of electric field gradients at Hg in 199Hg compounds.<br>Physical Chemistry Chemical Physics, 2012, 14, 2651.                                                               | 2.8  | 31        |
| 89 | On the discrepancy between theory and experiment for the F–F spin–spin coupling constant of difluoroethyne. Physical Chemistry Chemical Physics, 2012, 14, 16440.                                                            | 2.8  | 19        |
| 90 | Electric field gradients in Hg compounds: Molecular orbital (MO) analysis and comparison of<br>4-component and 2-component (ZORA) methods. Physical Chemistry Chemical Physics, 2012, 14, 16070.                             | 2.8  | 13        |

| #   | Article                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Analysis of the interactions between difluoroacetylene and one or two hydrogen fluoride molecules<br>based on calculated spin–spin coupling constants. Computational and Theoretical Chemistry, 2012,<br>998, 98-105.                                                                                             | 2.5 | 14        |
| 92  | Improving the calculation of electron paramagnetic resonance hyperfine coupling tensors for d-block metals. Physical Chemistry Chemical Physics, 2012, 14, 10669.                                                                                                                                                 | 2.8 | 31        |
| 93  | Nuclear magnetic resonance J coupling constant polarizabilities of hydrogen peroxide: A basis set and correlation study. Journal of Computational Chemistry, 2012, 33, 1845-1853.                                                                                                                                 | 3.3 | 13        |
| 94  | On the importance of excited state dynamic response electron correlation in polarizable embedding methods. Journal of Computational Chemistry, 2012, 33, 2012-2022.                                                                                                                                               | 3.3 | 38        |
| 95  | Estimating the carbonyl anharmonic vibrational frequency from affordable harmonic frequency calculations. Journal of Molecular Modeling, 2012, 18, 2471-2478.                                                                                                                                                     | 1.8 | 10        |
| 96  | Theoretical study of the triplet excited state of PtPOP and the exciplexes M-PtPOP (M=Tl, Ag) in solution and comparison with ultrafast X-ray scattering results. Chemical Physics, 2012, 393, 117-122.                                                                                                           | 1.9 | 14        |
| 97  | Definitive Benchmark Study of Ring Current Effects on Amide Proton Chemical Shifts. Journal of Chemical Theory and Computation, 2011, 7, 2078-2084.                                                                                                                                                               | 5.3 | 16        |
| 98  | An Isofagomine Analogue with an Amidine at the Pseudoanomeric Position. Organic Letters, 2011, 13, 2908-2911.                                                                                                                                                                                                     | 4.6 | 15        |
| 99  | Optimized Basis Sets for Calculation of Electron Paramagnetic Resonance Hyperfine Coupling<br>Constants: aug-cc-pVTZ-J for the 3d Atoms Sc–Zn. Journal of Chemical Theory and Computation, 2011, 7,<br>4077-4087.                                                                                                 | 5.3 | 78        |
| 100 | Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods. Journal of Chemical Physics, 2011, 135, 044306.                                                                                                           | 3.0 | 55        |
| 101 | Pople Style Basis Sets for the Calculation of NMR Spin–Spin Coupling Constants: the 6-31G-J and 6-311G-J<br>Basis Sets. Journal of Chemical Theory and Computation, 2011, 7, 4070-4076.                                                                                                                           | 5.3 | 52        |
| 102 | Mean Excitation Energies for Biomolecules. Advances in Quantum Chemistry, 2011, 62, 215-242.                                                                                                                                                                                                                      | 0.8 | 18        |
| 103 | Electric field effects on nuclear spin–spin coupling tensors and chiral discrimination via NMR<br>spectroscopy. Theoretical Chemistry Accounts, 2011, 129, 359-366.                                                                                                                                               | 1.4 | 18        |
| 104 | Calculated rotational and vibrational <i>g</i> factors of LiH X <sup>1</sup> Σ <sup>+</sup> and<br>evaluation of parameters in radial functions from rotational and vibrationâ€rotational spectra.<br>International Journal of Quantum Chemistry, 2011, 111, 736-752.                                             | 2.0 | 4         |
| 105 | David M. Bishop: Esteemed colleague and dear friend. International Journal of Quantum Chemistry, 2011, 111, 723-724.                                                                                                                                                                                              | 2.0 | 0         |
| 106 | David M. Bishop Curriculum Vitae. International Journal of Quantum Chemistry, 2011, 111, 725-725.                                                                                                                                                                                                                 | 2.0 | 0         |
| 107 | From CCSD(T)/augâ€ccâ€pVTZâ€J to CCSD(T) complete basis set limit isotropic nuclear magnetic shieldings via affordable DFT/CBS calculations. Magnetic Resonance in Chemistry, 2011, 49, 231-236.                                                                                                                  | 1.9 | 50        |
| 108 | The coupling constant polarizability and hyperpolarizabilty of <sup>1</sup> <i>J</i> (NH) in<br><i>N</i> â€methylacetamide, and its application for the multipole spin–spin coupling constant<br>polarizability/reaction field approach to solvation. Journal of Computational Chemistry, 2011, 32,<br>3168-3174. | 3.3 | 4         |

| #   | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Heterobimetallic Nitride Complexes from Terminal Chromium(V) Nitride Complexes: Hyperfine<br>Coupling Increases with Distance. Angewandte Chemie - International Edition, 2011, 50, 4480-4483.                                   | 13.8 | 27        |
| 110 | Benchmarking SOPPA(CC2) for the calculation of indirect nuclear spin–spin coupling constants:<br>Carbocycles. Chemical Physics, 2011, 381, 35-43.                                                                                | 1.9  | 31        |
| 111 | Benchmarking the multipole shielding polarizability/reaction field approach to solvation against QM/MM: Applications to the shielding constants of N-methylacetamide. Journal of Chemical Physics, 2011, 134, 044514.            | 3.0  | 9         |
| 112 | Comparison of the directional characteristics of swift ion excitation for two small biomolecules: glycine and alanine. European Physical Journal D, 2010, 60, 71-76.                                                             | 1.3  | 11        |
| 113 | Structural trends of <sup>77</sup> Se <sup>1</sup> H spin–spin coupling constants and conformational behavior of 2â€substituted selenophenes. Magnetic Resonance in Chemistry, 2010, 48, 44-52.                                 | 1.9  | 77        |
| 114 | Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: The importance of the large amplitude inversion mode. Journal of Chemical Physics, 2010, 132, 114305.                                         | 3.0  | 33        |
| 115 | Optimized basis sets for the calculation of indirect nuclear spin-spin coupling constants involving the atoms B, Al, Si, P, and Cl. Journal of Chemical Physics, 2010, 133, 054308.                                              | 3.0  | 83        |
| 116 | Communication: Rotational g-factor and spin-rotation constant of CH+. Journal of Chemical Physics, 2010, 133, 171101.                                                                                                            | 3.0  | 10        |
| 117 | Mean Excitation Energies and Energy Deposition Characteristics of Bio-organic Molecules. Journal of Physical Chemistry B, 2010, 114, 633-637.                                                                                    | 2.6  | 16        |
| 118 | Mean Excitation Energies and Their Directional Characteristics for Energy Deposition by Swift lons on the DNA and RNA Nucleobases. Journal of Physical Chemistry C, 2010, 114, 20335-20341.                                      | 3.1  | 14        |
| 119 | Stopping power of molecules for fast ions. Molecular Physics, 2010, 108, 2891-2897.                                                                                                                                              | 1.7  | 8         |
| 120 | Basis set effects on coupled cluster benchmarks of electronically excited states: CC3, CCSDR(3) and CC2. Molecular Physics, 2010, 108, 453-465.                                                                                  | 1.7  | 142       |
| 121 | The Effect of Solvation on the Mean Excitation Energy of Glycine. Journal of Physical Chemistry Letters, 2010, 1, 242-245.                                                                                                       | 4.6  | 20        |
| 122 | Benchmarking NMR indirect nuclear spin-spin coupling constants: SOPPA, SOPPA(CC2), and SOPPA(CCSD) versus CCSD. Journal of Chemical Physics, 2010, 133, 144106.                                                                  | 3.0  | 72        |
| 123 | Benchmarks of electronically excited states: Basis set effects on CASPT2 results. Journal of Chemical Physics, 2010, 133, 174318.                                                                                                | 3.0  | 201       |
| 124 | On the relation between the non-adiabatic vibrational reduced mass and the electric dipole moment gradient of a diatomic molecule. Theoretical Chemistry Accounts, 2009, 122, 137-143.                                           | 1.4  | 5         |
| 125 | Partial charges as reactivity descriptors for nitrido complexes. Computational and Theoretical Chemistry, 2009, 913, 1-7.                                                                                                        | 1.5  | 15        |
| 126 | Benchmarking Second Order Methods for the Calculation of Vertical Electronic Excitation Energies:<br>Valence and Rydberg States in Polycyclic Aromatic Hydrocarbons. Journal of Physical Chemistry A,<br>2009, 113, 11995-12012. | 2.5  | 51        |

| #   | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples<br>Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3. Journal of Chemical<br>Theory and Computation, 2009, 5, 555-564.                | 5.3 | 115       |
| 128 | Prediction of spin-spin coupling constants in solution based on combined density functional theory/molecular mechanics. Journal of Chemical Physics, 2009, 130, 134508.                                                                                          | 3.0 | 48        |
| 129 | Analysis of isotope effects in NMR one-bond indirect nuclear spin–spin coupling constants in terms of localized molecular orbitals. Physical Chemistry Chemical Physics, 2009, 11, 3987.                                                                         | 2.8 | 17        |
| 130 | The Anomalous Deuterium Isotope Effect in the NMR Spectrum of Methane: An Analysis in Localized<br>Molecular Orbitals. ChemPhysChem, 2008, 9, 1259-1261.                                                                                                         | 2.1 | 15        |
| 131 | On the aromaticity of tetrathiafulvalene cations. Chemical Physics Letters, 2008, 453, 136-139.                                                                                                                                                                  | 2.6 | 25        |
| 132 | On the Accuracy of Density Functional Theory to Predict Shifts in Nuclear Magnetic Resonance<br>Shielding Constants due to Hydrogen Bonding. Journal of Chemical Theory and Computation, 2008, 4,<br>267-277.                                                    | 5.3 | 51        |
| 133 | A Comparison of MÃ,ller-Plesset and Coupled Cluster Linear Response Theory Methods for the<br>Calculation of Dipole Oscillator Strength Sum Rules and C6 Dispersion Coefficients. Collection of<br>Czechoslovak Chemical Communications, 2008, 73, 1415-1436.    | 1.0 | 10        |
| 134 | Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction. Journal of Chemical Physics, 2008, 129, 104103.                                             | 3.0 | 478       |
| 135 | Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. Journal of Chemical Physics, 2008, 128, 134110.                                                                                                                                        | 3.0 | 833       |
| 136 | Amino Acid Mean Excitation Energies and Directional Dependencies from Core and Bond Calculations. , 2008, , .                                                                                                                                                    |     | 5         |
| 137 | Atomic partition of the optical rotatory power of methylhydroperoxide. Journal of Chemical Physics, 2008, 128, 064318.                                                                                                                                           | 3.0 | 10        |
| 138 | Calculations of Polarizabilities and Their Gradients for Electron Energy-Loss Spectroscopy.<br>Collection of Czechoslovak Chemical Communications, 2008, 73, 1509-1524.                                                                                          | 1.0 | 5         |
| 139 | Gauge invariant calculations of nuclear magnetic shielding constants using the continuous<br>transformation of the origin of the current density approach. II. Density functional and coupled<br>cluster theory. Journal of Chemical Physics, 2007, 126, 154111. | 3.0 | 34        |
| 140 | The RotationalgFactor of Diatomic Molecules in State1Σ+or 0+. Advances in Chemical Physics, 2007, ,<br>475-536.                                                                                                                                                  | 0.3 | 15        |
| 141 | On the Angular Dependence of the Vicinal Fluorineâ^'Fluorine Coupling Constant in<br>1,2-Difluoroethane:  Deviation from a Karplus-like Shape. Journal of Chemical Theory and Computation,<br>2006, 2, 1019-1027.                                                | 5.3 | 28        |
| 142 | Directional Dependence of the Mean Excitation Energy and Spectral Moments of the Dipole Oscillator<br>Strength Distribution of Glycine and Its Zwitterion. Journal of Physical Chemistry A, 2006, 110,<br>8811-8817.                                             | 2.5 | 26        |
| 143 | Two-photon absorption cross sections: An investigation of the accuracy of calculated absolute and relative values. Journal of Chemical Physics, 2006, 124, 114108.                                                                                               | 3.0 | 23        |
| 144 | Quantum-Chemical Calculations of Radial Functions for Rotational and Vibrational g Factors,<br>Electric Dipolar Moment and Adiabatic Corrections to the Potential Energy for Analysis of Spectra of<br>HeH+. Advances in Quantum Chemistry, 2005, , 319-334.     | 0.8 | 17        |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | On the Usage of Locally Dense Basis Sets in the Calculation of NMR Indirect Nuclear Spin–Spin<br>Coupling Constants: Vicinal Fluorine–Fluorine Couplings. Advances in Quantum Chemistry, 2005, ,<br>161-183.                                        | 0.8 | 65        |
| 146 | Analysis of Pure Rotational and Vibration-rotational Spectra of NaCl X1α+and Quantum-chemical<br>Calculation of Related Molecular Properties. Journal of the Chinese Chemical Society, 2005, 52,<br>631-639.                                        | 1.4 | 4         |
| 147 | Calculations of Dipole and Quadrupole Polarizability Radial Functions for LiH and HF: A Comparison of Different Linear Response Methods. Advances in Quantum Chemistry, 2005, 48, 185-208.                                                          | 0.8 | 15        |
| 148 | The Rotational g Tensor of HF, H2O, NH3, and CH4: A Comparison of Correlated Ab Initio Methods.<br>Advances in Quantum Chemistry, 2005, 48, 469-490.                                                                                                | 0.8 | 5         |
| 149 | The vibrational g-factor of dihydrogen from theoretical calculation and analysis of vibration-rotational spectra. Physical Chemistry Chemical Physics, 2005, 7, 1747.                                                                               | 2.8 | 27        |
| 150 | Interaction Energies and NMR Indirect Nuclear Spinâ^'Spin Coupling Constants in Linear HCN and HNC<br>Complexes. Journal of Physical Chemistry A, 2005, 109, 6555-6564.                                                                             | 2.5 | 52        |
| 151 | First principle calculations of 113Cd chemical shifts for proteins and model systems. Journal of<br>Biological Inorganic Chemistry, 2004, 9, 591-599.                                                                                               | 2.6 | 35        |
| 152 | Non-empirical calculations of NMR indirect carbon–carbon coupling constants. Part<br>8—Monocycloalkanes. Magnetic Resonance in Chemistry, 2004, 42, 671-686.                                                                                        | 1.9 | 50        |
| 153 | Large Long-Range Fâ^'F Indirect Spinâ^'Spin Coupling Constants. Prediction of Measurable Fâ^'F Couplings<br>over a Few Nanometers. Journal of Physical Chemistry A, 2004, 108, 5393-5398.                                                           | 2.5 | 49        |
| 154 | Substituent Effects on Scalar 2J(19F,19F) and 3J(19F,19F) NMR Couplings:  A Comparison of SOPPA and DFT Methods. Journal of Physical Chemistry A, 2003, 107, 4748-4754.                                                                             | 2.5 | 103       |
| 155 | Correlated and gauge invariant calculations of nuclear magnetic shielding constants using the continuous transformation of the origin of the current density approach. Journal of Chemical Physics, 2003, 118, 6830-6845.                           | 3.0 | 46        |
| 156 | Response theory in the multipole reaction field model for equilibrium and nonequilibrium solvation:<br>Exact theory and the second order polarization propagator approximation. Journal of Chemical<br>Physics, 2003, 119, 3849-3870.               | 3.0 | 15        |
| 157 | Special Issue on Nuclear Magnetic Resonance Spin–Spin Coupling Constants — Calculations and<br>Measurements. International Journal of Molecular Sciences, 2003, 4, 62-63.                                                                           | 4.1 | 1         |
| 158 | The Effect of Substituents on Indirect Nuclear Spin-Spin Coupling Constants: Methan- and Ethanimine,<br>Methanal- and Ethanaloxime. International Journal of Molecular Sciences, 2003, 4, 231-248.                                                  | 4.1 | 24        |
| 159 | Electric field gradients of water: A systematic investigation of basis set, electron correlation, and rovibrational effects. Journal of Chemical Physics, 2002, 116, 1424-1434.                                                                     | 3.0 | 20        |
| 160 | Non-empirical calculations of NMR indirect carbon-carbon coupling constants: 1. Three-membered rings. Magnetic Resonance in Chemistry, 2002, 40, 187-194.                                                                                           | 1.9 | 69        |
| 161 | Infrared spectra of CO in absorption and evaluation of radial functions for potential energy and electric dipolar moment. Theoretical Chemistry Accounts, 2002, 108, 85-97.                                                                         | 1.4 | 42        |
| 162 | The effect of lone pairs and electronegativity on the indirect nuclear spin–spin coupling constants in<br>CH2X (X=CH2, NH, O, S):Ab initiocalculations using optimized contracted basis sets. Journal of<br>Chemical Physics, 2001, 115, 1324-1334. | 3.0 | 252       |

| #   | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | A multipole second order MÃ,ller–Plesset solvent reaction field method. Journal of Chemical Physics, 2001, 114, 7753-7760.                                                                                                  | 3.0  | 11        |
| 164 | Theoretical Investigation of Steric and Electronic Effects in Coenzyme B12Models. Organometallics, 2001, 20, 550-556.                                                                                                       | 2.3  | 58        |
| 165 | Ab initio calculations on 2-imidazolyl-2-thiazolyl azo compounds – an investigation of potential near-infrared absorbing structures. Chemical Physics Letters, 2001, 343, 171-177.                                          | 2.6  | 12        |
| 166 | Relativistic calculations of the rotational g factor of the hydrogen halides and noble gas hydride cations. Journal of Chemical Physics, 2001, 114, 84.                                                                     | 3.0  | 20        |
| 167 | Nuclear spin–spin coupling in silane and its isotopomers: Ab initio calculation and experimental investigation. Journal of Chemical Physics, 2001, 115, 5994-6006.                                                          | 3.0  | 70        |
| 168 | Five-membered rings as diazo components in optical data storage devices: an ab initio investigation of the lowest singlet excitation energies. Chemical Physics Letters, 2000, 325, 115-119.                                | 2.6  | 57        |
| 169 | Nuclear spin–spin coupling in the acetylene isotopomers calculated fromab initiocorrelated surfaces<br>for 1J(C, H), 1J(C, C), 2J(C, H), and 3J(H, H). Journal of Chemical Physics, 2000, 112, 3735-3746.                   | 3.0  | 98        |
| 170 | Nuclear magnetic shielding in the acetylene isotopomers calculated from correlated shielding surfaces. Journal of Chemical Physics, 2000, 112, 736-746.                                                                     | 3.0  | 51        |
| 171 | Atomic integral driven second order polarization propagator calculations of the excitation spectra of naphthalene and anthracene. Journal of Chemical Physics, 2000, 112, 4173-4185.                                        | 3.0  | 131       |
| 172 | Unexpected differential sensitivity of nuclear spin–spin-coupling constants to bond stretching in<br>BH4â°',â€,NH4+, and SiH4. Journal of Chemical Physics, 2000, 113, 3121-3129.                                           | 3.0  | 78        |
| 173 | The use of locally dense basis sets in the calculation of indirect nuclear spin–spin coupling constants: The vicinal coupling constants in H3C–CH2X (X=H, F, Cl, Br, I). Journal of Chemical Physics, 2000, 112, 6201-6208. | 3.0  | 86        |
| 174 | The computation of Karplus equation coefficients and their components using self-consistent field and second-order polarization propagator methods. Molecular Physics, 2000, 98, 1981-1990.                                 | 1.7  | 28        |
| 175 | Ab Initio Calculation of the Electronic Spectrum of Azobenzene Dyes and Its Impact on the Design of<br>Optical Data Storage Materials. Journal of the American Chemical Society, 2000, 122, 3482-3487.                      | 13.7 | 114       |
| 176 | Calculations of the indirect nuclear spin-spin coupling constants of PbH 4. Theoretical Chemistry<br>Accounts, 1999, 103, 146-153.                                                                                          | 1.4  | 53        |
| 177 | The Bethe Sum Rule and Basis Set Selection in the Calculation of Generalized Oscillator Strengths.<br>Advances in Quantum Chemistry, 1999, , 175-192.                                                                       | 0.8  | 8         |
| 178 | Calculated nuclear shielding surfaces in the water molecule; prediction and analysis of σ(O), σ(H) and<br>σ(D) in water isotopomers. Molecular Physics, 1999, 96, 1595-1607.                                                | 1.7  | 30        |
| 179 | Calculated nuclear shielding surfaces in the water molecule; prediction and analysis of sigma(O), sigma(H) and sigma(D) in water isotopomers. Molecular Physics, 1999, 96, 1595-1607.                                       | 1.7  | 7         |
| 180 | A second-order doubles correction to excitation energies in the random-phase approximation.<br>Chemical Physics Letters, 1998, 284, 47-55.                                                                                  | 2.6  | 39        |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | A relation between the rotational g-factor and the electric dipole moment of a diatomic molecule.<br>Chemical Physics Letters, 1998, 297, 475-483.                                                                                                           | 2.6 | 20        |
| 182 | Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD). Theoretical Chemistry Accounts, 1998, 100, 275-284.                                               | 1.4 | 287       |
| 183 | The vibrational and temperature dependence of the indirect nuclear spin–spin coupling constants of the oxonium (H3O+) and hydroxyl (OHâ^) ions. Chemical Physics, 1998, 238, 385-399.                                                                        | 1.9 | 49        |
| 184 | Correlated, Static and Dynamic Polarizabilities of Small Molecules. Comparison of Four "Black Box―<br>Methods. Journal of Physical Chemistry A, 1998, 102, 5269-5274.                                                                                        | 2.5 | 64        |
| 185 | Calculated spin-spin coupling surfaces in the water molecule; prediction and analysis of J(O, H), J(O, D)<br>and J(H, D) in water isotopomers. Molecular Physics, 1998, 94, 851-862.                                                                         | 1.7 | 88        |
| 186 | Second-order polarization propagator approximation with coupled-cluster singles and doubles<br>amplitudes - SOPPA(CCSD): the polarizability and hyperpolarizability of. Journal of Physics B: Atomic,<br>Molecular and Optical Physics, 1997, 30, 3773-3780. | 1.5 | 147       |
| 187 | Calculation, with the inclusion of vibrational corrections, of the dc-electric-field-induced<br>second-harmonic-generation hyperpolarizability of methane. Journal of Chemical Physics, 1997, 107,<br>8502-8509.                                             | 3.0 | 46        |
| 188 | The vibrational dependence of the hydrogen and oxygen nuclear magnetic shielding constants in OHâ^'<br>and OHâ^' · H2O. Chemical Physics, 1997, 214, 91-101.                                                                                                 | 1.9 | 19        |
| 189 | Theoretical estimates of the rotational g-factor, magnetizability and electric dipole moment of GaH.<br>Chemical Physics Letters, 1996, 260, 271-279.                                                                                                        | 2.6 | 30        |
| 190 | Calculations of magnetic hyperfine structure constants for the low-lying rovibrational levels of LiH,<br>HF, CH+, and BH. Chemical Physics, 1995, 201, 405-425.                                                                                              | 1.9 | 24        |
| 191 | Calculated molecular mean excitation energies for some small molecules. Nuclear Instruments &<br>Methods in Physics Research B, 1995, 100, 458-463.                                                                                                          | 1.4 | 31        |
| 192 | Experimental and Theoretical Estimates of the Rotational g Factor of AlH in the Electronic Ground State X1.SIGMA.+. The Journal of Physical Chemistry, 1994, 98, 8617-8621.                                                                                  | 2.9 | 44        |
| 193 | Correlated dipole oscillator sum rules. Journal of Chemical Physics, 1994, 100, 8969-8975.                                                                                                                                                                   | 3.0 | 30        |
| 194 | The vibrational and temperature dependence of the magnetic properties of the oxonium ion (H3O+).<br>Chemical Physics, 1994, 184, 1-11.                                                                                                                       | 1.9 | 26        |
| 195 | Correlated polarization propagator calculations of static polarizabilities. International Journal of<br>Quantum Chemistry, 1994, 50, 317-332.                                                                                                                | 2.0 | 40        |
| 196 | Correlated and gauge origin independent calculations of magnetic properties. Theoretica Chimica<br>Acta, 1994, 88, 351-361.                                                                                                                                  | 0.8 | 47        |
| 197 | Correlated dipole polarizabilities and dipole moments of the halides HX and CH3X (X=F, Cl and Br).<br>Theoretica Chimica Acta, 1994, 89, 323-333.                                                                                                            | 0.8 | 26        |
| 198 | Evaluation of adiabatic and nonadiabatic effects from vibration—rotational spectra of LiH X 1Σ+.<br>Chemical Physics Letters, 1994, 228, 183-190.                                                                                                            | 2.6 | 33        |

| #   | Article                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Correlated and gauge origin independent calculations of magnetic properties. Molecular Physics, 1994, 81, 87-118.                                                                                    | 1.7  | 59        |
| 200 | Calculation of the Verdet constants for H2, N2, CO, and FH. Journal of Chemical Physics, 1993, 98, 487-495.                                                                                          | 3.0  | 40        |
| 201 | Directional characteristics of the moments of the dipole-oscillator-strength distribution of molecules:H2andH2O. Physical Review A, 1993, 47, 1123-1129.                                             | 2.5  | 21        |
| 202 | Paramagnetism of closed shell diatomic hydrides with six valence electrons. Journal of Chemical Physics, 1993, 98, 9748-9757.                                                                        | 3.0  | 50        |
| 203 | A sumâ€overâ€states formulation of the diamagnetic contribution to the indirect nuclear spin–spin<br>coupling constant. Journal of Chemical Physics, 1993, 98, 9220-9221.                            | 3.0  | 29        |
| 204 | Correlated calculations of the rotationalg-tensor and origin independent magnetizability surface of BH. Molecular Physics, 1992, 76, 445-465.                                                        | 1.7  | 44        |
| 205 | The magnetizability and g-factor surfaces of ammonia. Chemical Physics, 1991, 153, 189-200.                                                                                                          | 1.9  | 35        |
| 206 | Second-order polarization propagator calculations of dynamic dipole polarizabilities and C6 coefficients. International Journal of Quantum Chemistry, 1991, 39, 667-679.                             | 2.0  | 39        |
| 207 | Magnesium(II)â€ATP Complexes in 1â€Ethylâ€3â€Methylimidazolium Acetate Solutions Characterized by 31Mg<br>βâ€Radiationâ€Detected NMR Spectroscopy. Angewandte Chemie - International Edition, 0, , . | 13.8 | 1         |
| 208 | Magnesium(II)â€ATP Complexes in 1â€Ethylâ€3â€Methylimidazolium Acetate Solutions Characterized by 31Mg<br>βâ€Radiationâ€Detected NMR Spectroscopy. Angewandte Chemie, 0, , .                         | 2.0  | 1         |