Umesh Wankhade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9484122/publications.pdf

Version: 2024-02-01

45 papers

1,163 citations

430874 18 h-index 395702 33 g-index

45 all docs

45 docs citations

45 times ranked 2104 citing authors

#	Article	IF	CITATIONS
1	Dietary Blueberry Ameliorates Vascular Complications in Diabetic Mice Possibly through NOX4 and Modulates Composition and Functional Diversity of Gut Microbes. Molecular Nutrition and Food Research, 2022, 66, e2100784.	3.3	12
2	Dietary Conjugated Linoleic Acid Reduces Body Weight and Fat in Snord116m+/pâ^' and Snord116mâ^'/pâ^' Mouse Models of Prader–Willi Syndrome. Nutrients, 2022, 14, 860.	4.1	1
3	Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis. Scientific Reports, 2022, 12, 7273.	3.3	10
4	Beige Adipose Tissue Identification and Marker Specificityâ€"Overview. Frontiers in Endocrinology, 2021, 12, 599134.	3.5	60
5	A Tryptophan-Deficient Diet Induces Gut Microbiota Dysbiosis and Increases Systemic Inflammation in Aged Mice. International Journal of Molecular Sciences, 2021, 22, 5005.	4.1	40
6	<scp>Shortâ€Term</scp> Increased Physical Activity During Early Life Affects Highâ€Fat <scp>Diet–Induced</scp> Bone Loss in Young Adult Mice. JBMR Plus, 2021, 5, e10508.	2.7	2
7	On the potential role of globins in brown adipose tissue: a novel conceptual model and studies in myoglobin knockout mice. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E47-E62.	3.5	11
8	GPR109A mediates the effects of hippuric acid on regulating osteoclastogenesis and bone resorption in mice. Communications Biology, 2021, 4, 53.	4.4	6
9	Lactotrehalose, an Analog of Trehalose, Increases Energy Metabolism Without Promoting Clostridioides difficile Infection in Mice. Gastroenterology, 2020, 158, 1402-1416.e2.	1.3	23
10	<scp>Nox4</scp> Expression Is Not Required for <scp>OVX</scp> â€Induced Osteoblast Senescence and Bone Loss in Mice. JBMR Plus, 2020, 4, e10376.	2.7	9
11	Xenometabolite signatures in the UC Davis type 2 diabetes mellitus rat model revealed using a metabolomics platform enriched with microbe-derived metabolites. American Journal of Physiology - Renal Physiology, 2020, 319, G157-G169.	3.4	13
12	3â€(3â€Hydroxyphenyl)â€Propionic Acid (PPA) Suppresses Osteoblastic Cell Senescence to Promote Bone Accretion in Mice. JBMR Plus, 2019, 3, e10201.	2.7	13
13	Intrinsic High Aerobic Capacity in Male Rats Protects Against Diet-Induced Insulin Resistance. Endocrinology, 2019, 160, 1179-1192.	2.8	18
14	Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. Journal of Nutritional Biochemistry, 2019, 66, 63-69.	4.2	47
15	Liver tumorigenesis is promoted by a high saturated fat diet specifically in male mice and is associated with hepatic expression of the proto-oncogene Agap2 and enrichment of the intestinal microbiome with Coprococcus. Carcinogenesis, 2019, 40, 349-359.	2.8	19
16	Sex-Specific Changes in Gut Microbiome Composition following Blueberry Consumption in C57BL/6J Mice. Nutrients, 2019, 11, 313.	4.1	27
17	Dynamic assessment of microbial ecology (DAME): a web app for interactive analysis and visualization of microbial sequencing data. Bioinformatics, 2018, 34, 1050-1052.	4.1	16
18	High-fat, high-fructose, high-cholesterol feeding causes severe NASH and cecal microbiota dysbiosis in juvenile Ossabaw swine. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E78-E92.	3.5	73

#	Article	IF	CITATIONS
19	Maternal High-Fat Diet Programs Offspring Liver Steatosis in a Sexually Dimorphic Manner in Association with Changes in Gut Microbial Ecology in Mice. Scientific Reports, 2018, 8, 16502.	3.3	70
20	Diabetes-associated alterations in the cecal microbiome and metabolome are independent of diet or environment in the UC Davis Type 2 Diabetes Mellitus Rat model. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E961-E972.	3.5	18
21	Cecal versus fecal microbiota in Ossabaw swine and implications for obesity. Physiological Genomics, 2018, 50, 355-368.	2.3	33
22	TGF- \hat{l}^2 receptor 1 regulates progenitors that promote browning of white fat. Molecular Metabolism, 2018, 16, 160-171.	6.5	33
23	Flow Cytometry Assisted Isolation of Adipose Tissue Derived Stem Cells. Methods in Molecular Biology, 2017, 1566, 17-24.	0.9	3
24	Soy compared with milk protein in a Western diet changes fecal microbiota and decreases hepatic steatosis in obese OLETF rats. Journal of Nutritional Biochemistry, 2017, 46, 125-136.	4.2	32
25	Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations. PLoS ONE, 2017, 12, e0175675.	2.5	147
26	Host diabetes status is the major regulator of gut microbiome in the UCDâ€₹2DM Rat. FASEB Journal, 2017, 31, .	0.5	0
27	Interactive effects of blueberry supplementation and GPR109A deletion on gut microbiome profiles in mice. FASEB Journal, 2017, 31, 444.2.	0.5	0
28	Integrative Metabolism and Circadian Rhythmsâ€"Contributions of Maternal Programming. , 2017, , 141-154.		0
29	Novel Browning Agents, Mechanisms, and Therapeutic Potentials of Brown Adipose Tissue. BioMed Research International, 2016, 2016, 1-15.	1.9	63
30	Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering. Stem Cells International, 2016, 2016, 1-9.	2.5	117
31	Persistent influence of maternal obesity on offspring health: Mechanisms from animal models and clinical studies. Molecular and Cellular Endocrinology, 2016, 435, 7-19.	3.2	39
32	Gut microbiota are linked to increased susceptibility to hepatic steatosis in low-aerobic-capacity rats fed an acute high-fat diet. American Journal of Physiology - Renal Physiology, 2016, 311, G166-G179.	3.4	32
33	Maternal Obesity Programs Offspring's Predisposition to Nonâ€Alcoholic Fatty Liver Disease and Steatohepatitis. FASEB Journal, 2016, 30, 516.7.	0.5	0
34	Gestational Exposure to Maternal Obesity Influences β3â€Adrenergic Agonist Induced Beiging of White Adipose Tissue in Offspring. FASEB Journal, 2016, 30, 287.8.	0.5	0
35	Macrophages Switch: The Fate of Adipose Tissue in Obesity. MOJ Immunology, 2016, 3, .	11.0	0
36	Adiposeâ€tissue specific deletion of TGFâ€Î² receptor 1 kinase protects mice from dietâ€induced obesity and diabetes (577.4). FASEB Journal, 2014, 28, .	0.5	0

3

#	Article	IF	Citations
37	Transforming Growth Factor- \hat{l}^2 3 (TGF- \hat{l}^2 3) Knock-in Ameliorates Inflammation Due to TGF- \hat{l}^2 1 Deficiency While Promoting Glucose Tolerance. Journal of Biological Chemistry, 2013, 288, 32074-32092.	3.4	41
38	Two single nucleotide polymorphisms in the human nescient helix-loop-helix 2 (NHLH2) gene reduce mRNA stability and DNA binding. Gene, 2013, 512, 134-142.	2.2	11
39	Melanocortin 4 receptor is a transcriptional target of nescient helix-loop-helix-2. Molecular and Cellular Endocrinology, 2011, 341, 39-47.	3.2	25
40	Deletion of Nhlh2 Results in a Defective Torpor Response and Reduced Beta Adrenergic Receptor Expression in Adipose Tissue. PLoS ONE, 2010, 5, e12324.	2.5	17
41	Neonatal administration of monosodium glutamate (MSG) to induce Typeâ€2 diabetes in prepubertal pigs. FASEB Journal, 2010, 24, 327.1.	0.5	0
42	Performance of growing lambs fed processed karanj (<i>Pongamia glabra</i>) oil seed cake as partial protein supplement to soybean meal. Journal of Animal Physiology and Animal Nutrition, 2009, 93, 237-244.	2.2	6
43	Loss of PPAR \hat{I}^3 in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. Journal of Nutritional Biochemistry, 2008, 19, 216-228.	4.2	75
44	The loss of PPAR \hat{I}^3 in immune cells abrogates the ability of abscisic acid to improve insulin sensitivity through a mechanism involving suppression of MCPâ \in 1 expression and macrophage infiltration into white adipose tissue. FASEB Journal, 2007, 21, A64.	0.5	1
45	Immunomodulatory properties of longâ€ŧerm dietary supplementation with abscisic acid. FASEB Journal, 2007, 21, A376.	0.5	O