
E Millour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9483525/publications.pdf Version: 2024-02-01

FMILLOUR

#	Article	IF	CITATIONS
1	Eight-year climatology of dust optical depth on Mars. Icarus, 2015, 251, 65-95.	2.5	316
2	Global modelling of the early martian climate under a denser CO2 atmosphere: Water cycle and ice evolution. Icarus, 2013, 222, 1-19.	2.5	275
3	3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus, 2013, 222, 81-99.	2.5	259
4	Amazonian northern mid-latitude glaciation on Mars: A proposed climate scenario. Icarus, 2009, 203, 390-405.	2.5	240
5	GLIESE 581D IS THE FIRST DISCOVERED TERRESTRIAL-MASS EXOPLANET IN THE HABITABLE ZONE. Astrophysical Journal Letters, 2011, 733, L48.	8.3	205
6	3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability. Astronomy and Astrophysics, 2013, 554, A69.	5.1	203
7	Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. Journal of Geophysical Research E: Planets, 2014, 119, 1479-1495.	3.6	162
8	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	12.9	161
9	Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. Journal of Geophysical Research, 2011, 116, .	3.3	145
10	Martian Year 34 Column Dust Climatology from Mars Climate Sounder Observations: Reconstructed Maps and Model Simulations. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006111.	3.6	137
11	The Atmospheric Chemistry Suite (ACS) of Three Spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Science Reviews, 2018, 214, 1.	8.1	119
12	Stormy water on Mars: The distribution and saturation of atmospheric water during the dusty season. Science, 2020, 367, 297-300.	12.6	117
13	The influence of radiatively active water ice clouds on the Martian climate. Geophysical Research Letters, 2012, 39, .	4.0	115
14	A groundâ€ŧoâ€exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research, 2009, 114, .	3.3	107
15	Geology of the InSight landing site on Mars. Nature Communications, 2020, 11, 1014.	12.8	107
16	Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3â€Ð GCM. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,414.	3.3	106
17	ls Cliese 581d habitable? Some constraints from radiative-convective climate modeling. Astronomy and Astrophysics, 2010, 522, A22.	5.1	95
18	LMDZ6A: The Atmospheric Component of the IPSL Climate Model With Improved and Better Tuned Physics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001892.	3.8	89

E Millour

#	Article	IF	CITATIONS
19	Atmospheric Science with InSight. Space Science Reviews, 2018, 214, 1.	8.1	88
20	Recent Ice Ages on Mars: The role of radiatively active clouds and cloud microphysics. Geophysical Research Letters, 2014, 41, 4873-4879.	4.0	75
21	Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. Journal of Geophysical Research E: Planets, 2015, 120, 2020-2035.	3.6	67
22	A thermal plume model for the Martian convective boundary layer. Journal of Geophysical Research E: Planets, 2013, 118, 1468-1487.	3.6	61
23	A post-new horizons global climate model of Pluto including the N 2 , CH 4 and CO cycles. Icarus, 2017, 287, 54-71.	2.5	61
24	Diurnal Variations of Dust During the 2018 Global Dust Storm Observed by the Mars Climate Sounder. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006115.	3.6	52
25	Global climate modeling of Saturn's atmosphere. Part I: Evaluation of the radiative transfer model. Icarus, 2014, 238, 110-124.	2.5	45
26	A Study of Daytime Convective Vortices and Turbulence in the Martian Planetary Boundary Layer Based on Halfâ€a‥ear of InSight Atmospheric Measurements and Largeâ€Eddy Simulations. Journal of Geophysical Research E: Planets, 2021, 126, .	3.6	45
27	The impact of martian mesoscale winds on surface temperature and on the determination of thermal inertia. Icarus, 2011, 212, 504-519.	2.5	44
28	Dark spots and cold jets in the polar regions of Mars: New clues from a thermal model of surface CO2 ice. Icarus, 2011, 213, 131-149.	2.5	38
29	Unraveling the martian water cycle with high-resolution global climate simulations. Icarus, 2017, 291, 82-106.	2.5	34
30	Snow precipitation on Mars driven by cloud-induced night-time convection. Nature Geoscience, 2017, 10, 652-657.	12.9	32
31	Global climate modeling of Saturn's atmosphere. Part II: Multi-annual high-resolution dynamical simulations. Icarus, 2020, 335, 113377.	2.5	31
32	VESPA: A community-driven Virtual Observatory in Planetary Science. Planetary and Space Science, 2018, 150, 65-85.	1.7	28
33	Parameterization of Rocket Dust Storms on Mars in the LMD Martian GCM: Modeling Details and Validation. Journal of Geophysical Research E: Planets, 2018, 123, 982-1000.	3.6	28
34	The Challenge of Atmospheric Data Assimilation on Mars. Earth and Space Science, 2017, 4, 690-722.	2.6	27
35	Solar Tides in the Middle and Upper Atmosphere of Mars. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028140.	2.4	27
36	Detection of detached dust layers in the Martian atmosphere from their thermal signature using assimilation. Geophysical Research Letters, 2014, 41, 6620-6626.	4.0	26

E MILLOUR

#	Article	IF	CITATIONS
37	Wind measurements in Mars' middle atmosphere: IRAM Plateau de Bure interferometric CO observations. Icarus, 2009, 201, 549-563.	2.5	25
38	Study of gravity waves distribution and propagation in the thermosphere of Mars based on MGS, ODY, MRO and MAVEN density measurements. Planetary and Space Science, 2019, 178, 104708.	1.7	25
39	Impact of Gravity Waves on the Middle Atmosphere of Mars: A Nonâ€Orographic Gravity Wave Parameterization Based on Global Climate Modeling and MCS Observations. Journal of Geophysical Research E: Planets, 2020, 125, e2018JE005873.	3.6	23
40	Soil Thermophysical Properties Near the InSight Lander Derived From 50 Sols of Radiometer Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006859.	3.6	22
41	Improved Representation of Clouds in the Atmospheric Component LMDZ6A of the IPSLâ€CM6A Earth System Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002046.	3.8	20
42	Relationship Between the Ozone and Water Vapor Columns on Mars as Observed by SPICAM and Calculated by a Global Climate Model. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006838.	3.6	19
43	Seasonal reappearance of HCl in the atmosphere of Mars during the Mars year 35 dusty season. Astronomy and Astrophysics, 2021, 647, A161.	5.1	17
44	Mars's Twilight Cloud Band: A New Cloud Feature Seen During the Mars Year 34 Global Dust Storm. Geophysical Research Letters, 2020, 47, e2019GL084997.	4.0	16
45	Material ejection by the cold jets and temperature evolution of the south seasonal polar cap of Mars from THEMIS/CRISM observations and implications for surface properties. Journal of Geophysical Research E: Planets, 2013, 118, 2520-2536.	3.6	14
46	Near Surface Properties of Martian Regolith Derived From InSight HP ³ â€RAD Temperature Observations During Phobos Transits. Geophysical Research Letters, 2021, 48, e2021GL093542.	4.0	13
47	The Effect of the Martian 2018 Global Dust Storm on HDO as Predicted by a Mars Global Climate Model. Geophysical Research Letters, 2021, 48, e2020GL090962.	4.0	12
48	InSight Pressure Data Recalibration, and Its Application to the Study of Longâ€Term Pressure Changes on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	12
49	Meteorological pressure at Gale crater from a comparison of REMS/MSL data and MCD modelling: Effect of dust storms. Icarus, 2019, 317, 591-609.	2.5	10
50	The Mars Climate Database (version 4.3). , 0, , .		9
51	Thermal Structure and Aerosols in Mars' Atmosphere From TIRVIM/ACS Onboard the ExoMars Trace Gas Orbiter: Validation of the Retrieval Algorithm. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	9
52	Troposphere-to-mesosphere microphysics of carbon dioxide ice clouds in a Mars Global Climate Model. Icarus, 2022, 385, 115098.	2.5	9
53	Global climate modeling of Saturn's atmosphere. Part IV: Stratospheric equatorial oscillation. Icarus, 2021, 354, 114042.	2.5	8
54	Virtual European Solar & Planetary Access (VESPA): A Planetary Science Virtual Observatory Cornerstone. Data Science Journal, 2020, 19, .	1.3	7

E Millour

#	Article	IF	CITATIONS
55	Volatile transport modeling on Triton with new observational constraints. Icarus, 2022, 373, 114764.	2.5	7
56	Improvement of Mars Surface Snow Albedo Modeling in LMD Mars GCM With SNICAR. Journal of Geophysical Research E: Planets, 2018, 123, 780-791.	3.6	5
57	The Wave Origins of Longitudinal Structures in ExoMars Trace Gas Orbiter (TGO) Aerobraking Densities. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028769.	2.4	5
58	Stratigraphic and Isotopic Evolution of the Martian Polar Caps From Paleo limate Models. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
59	Seasonal Changes in the Vertical Structure of Ozone in the Martian Lower Atmosphere and Its Relationship to Water Vapor. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
60	Sensitivity of binary liquid thermal convection to confinement. Physics of Fluids, 2003, 15, 2791.	4.0	3
61	Axisymmetric convective states of pure and binary liquids enclosed in a vertical cylinder and boundary conditions' influence thereupon. Physics of Fluids, 2005, 17, 044102.	4.0	1
62	No detection of SO ₂ , H ₂ S, or OCS in the atmosphere of Mars from the first two Martian years of observations from TGO/ACS. Astronomy and Astrophysics, 2022, 658, A86.	5.1	1

5