D H Froula

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/948201/publications.pdf

Version: 2024-02-01

249 papers 7,119 citations

57758 44 h-index 95266 68 g-index

253 all docs

253 docs citations

times ranked

253

2680 citing authors

#	Article	IF	CITATIONS
1	Cross-beam energy transfer saturation: ion heating and pump depletion. Plasma Physics and Controlled Fusion, 2022, 64, 034003.	2.1	4
2	Spatiotemporal control of laser intensity through cross-phase modulation. Optics Express, 2022, 30, 9878.	3.4	17
3	Strong suppression of heat conduction in a laboratory replica of galaxy-cluster turbulent plasmas. Science Advances, 2022, 8, eabj6799.	10.3	11
4	Independent-hot-spot approach to multibeam laser-plasma instabilities. Physical Review E, 2022, 105, .	2.1	2
5	Nonlinear Thomson scattering with ponderomotive control. Physical Review E, 2022, 105, .	2.1	16
6	Beam Spray Thresholds in ICF-Relevant Plasmas. Physical Review Letters, 2022, 129, .	7.8	6
7	Insensitivity of a turbulent laser-plasma dynamo to initial conditions. Matter and Radiation at Extremes, 2022, 7, .	3.9	3
8	Direct-drive laser fusion: status, plans and future. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200011.	3.4	20
9	Laser-plasma acceleration beyond wave breaking. Physics of Plasmas, 2021, 28, .	1.9	9
10	Cross-Beam Energy Transfer Saturation by Ion Heating. Physical Review Letters, 2021, 126, 075002.	7.8	19
11	Towards the optimisation of direct laser acceleration. New Journal of Physics, 2021, 23, 023031.	2.9	22
12	The Scattered Light Time-history Diagnostic suite at the National Ignition Facility. Review of Scientific Instruments, 2021, 92, 033511.	1.3	5
13	Time-resolved turbulent dynamo in a laser plasma. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	20
14	Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers. Physics of Plasmas, 2021, 28, .	1.9	32
15	A transmitted-beam diagnostic for the wavelength-tunable UV drive beam on OMEGA. Review of Scientific Instruments, 2021, 92, 033526.	1.3	5
16	Suppressing the enhancement of stimulated Raman scattering in inhomogeneous plasmas by tuning the modulation frequency of a broadband laser. Physics of Plasmas, 2021, 28, .	1.9	14
17	Microcoulomb (0.7 ű $\frac{0.4}{0.2}$ laser plasma accelerator on OMEGA EP. Scientific Reports, 2021, 11, 7498.	3.3	17
18	Unabsorbed light beamlets for diagnosing coronal density profiles and absorption nonuniformity in direct-drive implosions on OMEGA. Review of Scientific Instruments, 2021, 92, 043525.	1.3	2

#	Article	IF	CITATIONS
19	Measurements of Non-Maxwellian Electron Distribution Functions and Their Effect on Laser Heating. Physical Review Letters, 2021, 127, 015001.	7.8	26
20	Hot Raman amplification. Physics of Plasmas, 2021, 28, 062311.	1.9	3
21	Cross-beam energy transfer saturation by ion trapping-induced detuning. Physics of Plasmas, 2021, 28, 082705.	1.9	7
22	Nonuniform Absorption and Scattered Light in Direct-Drive Implosions Driven by Polarization Smoothing. Physical Review Letters, 2021, 127, 075001.	7.8	11
23	Statistical analysis of non-Maxwellian electron distribution functions measured with angularly resolved Thomson scattering. Physics of Plasmas, 2021, 28, .	1.9	10
24	Density evolution after shock release from laser-driven polystyrene (CH) targets in inertial confinement fusion. Physics of Plasmas, 2021, 28, .	1.9	2
25	Optical shock-enhanced self-photon acceleration. Physical Review A, 2021, 104, .	2.5	10
26	Advanced laser development and plasma-physics studies on the multiterawatt laser. Applied Optics, 2021, 60, 11104.	1.8	11
27	Investigation of picosecond thermodynamics in a laser-produced plasma using Thomson scattering. Plasma Physics and Controlled Fusion, 2020, 62, 014012.	2.1	3
28	Impact of the Langdon effect on crossed-beam energy transfer. Nature Physics, 2020, 16, 181-185.	16.7	37
29	Vacuum acceleration of electrons in a dynamic laser pulse. Physical Review E, 2020, 102, 043207.	2.1	18
30	Novel Hot-Spot Ignition Designs for Inertial Confinement Fusion with Liquid-Deuterium-Tritium Spheres. Physical Review Letters, 2020, 125, 065001.	7.8	9
31	Impact of spatiotemporal smoothing on the two-plasmon–decay instability. Physics of Plasmas, 2020, 27, .	1.9	10
32	Laser-driven collisionless shock acceleration of ions from near-critical plasmas. Physics of Plasmas, 2020, 27, .	1.9	12
33	Anomalous Absorption by the Two-Plasmon Decay Instability. Physical Review Letters, 2020, 124, 185001.	7.8	22
34	Hot-electron generation at direct-drive ignition-relevant plasma conditions at the National Ignition Facility. Physics of Plasmas, 2020, 27, .	1.9	27
35	Dephasingless Laser Wakefield Acceleration. Physical Review Letters, 2020, 124, 134802.	7.8	82
36	Transport of High-energy Charged Particles through Spatially Intermittent Turbulent Magnetic Fields. Astrophysical Journal, 2020, 892, 114.	4.5	8

#	Article	IF	CITATIONS
37	Evolution of the Electron Distribution Function in the Presence of Inverse Bremsstrahlung Heating and Collisional Ionization. Physical Review Letters, 2020, 124, 025001.	7.8	19
38	Multibeam absolute stimulated Raman scattering and two-plasmon decay. Physical Review E, 2020, 101, 043214.	2.1	10
39	Nonlinear spatiotemporal control of laser intensity. Optics Express, 2020, 28, 38516.	3.4	18
40	Application of Near-Field and Far-Field Beam Shaping Techniques for High-Power Lasers. , 2020, , .		0
41	Mitigation of self-focusing in Thomson scattering experiments. Physics of Plasmas, 2019, 26, .	1.9	10
42	LPSE: A 3-D wave-based model of cross-beam energy transfer in laser-irradiated plasmas. Journal of Computational Physics, 2019, 399, 108916.	3.8	20
43	Photon Acceleration in a Flying Focus. Physical Review Letters, 2019, 123, 124801.	7.8	42
44	Observation of collisionless-to-collisional transition in colliding plasma jets with optical Thomson scattering. Physics of Plasmas, 2019, 26, .	1.9	7
45	Tripled yield in direct-drive laser fusion through statistical modelling. Nature, 2019, 565, 581-586.	27.8	103
46	Study of a magnetically driven reconnection platform using ultrafast proton radiography. Physics of Plasmas, 2019, 26, .	1.9	17
47	Thresholds of absolute instabilities driven by a broadband laser. Physics of Plasmas, 2019, 26, .	1.9	51
48	Picosecond Thermodynamics in Underdense Plasmas Measured with Thomson Scattering. Physical Review Letters, 2019, 122, 155001.	7.8	12
49	Measuring heat flux from collective Thomson scattering with non-Maxwellian distribution functions. Physics of Plasmas, 2019, 26, .	1.9	13
50	Impact of non-Maxwellian electron velocity distribution functions on inferred plasma parameters in collective Thomson scattering. Physics of Plasmas, 2019, 26, .	1.9	14
51	Flying focus: Spatial and temporal control of intensity for laser-based applications. Physics of Plasmas, 2019, 26, .	1.9	23
52	Mega-Gauss Plasma Jet Creation Using a Ring of Laser Beams. Astrophysical Journal Letters, 2019, 873, L11.	8.3	12
53	Optimization of high energy x ray production through laser plasma interaction. High Energy Density Physics, 2019, 31, 13-18.	1.5	8
54	Numerical simulation of magnetized jet creation using a hollow ring of laser beams. Physics of Plasmas, 2019, 26, .	1.9	10

#	Article	lF	CITATIONS
55	Plasma Density Measurements of the Inner Shell Release. Physical Review Letters, 2019, 123, 235001.	7.8	15
56	Flying focus and its application to plasma-based laser amplifiers. Plasma Physics and Controlled Fusion, 2019, 61, 014022.	2.1	12
57	Tunable UV upgrade on OMEGA EP. , 2019, , .		7
58	Measurement and control of large diameter ionization waves of arbitrary velocity. Optics Express, 2019, 27, 31978.	3.4	14
59	A methodology for designing grism stretchers for idler-based optical parametric chirped-pulse amplification systems. , 2019, , .		0
60	Methodology for designing grism stretchers for idler-based optical parametric chirped-pulse-amplification systems. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2325.	2.1	7
61	Highly Resolved Measurements of a Developing Strong Collisional Plasma Shock. Physical Review Letters, 2018, 120, 095001.	7.8	23
62	Channel optimization of high-intensity laser beams in millimeter-scale plasmas. Physical Review E, 2018, 97, 043208.	2.1	9
63	Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma. Nature Communications, 2018, 9, 591.	12.8	105
64	The National Direct-Drive Program: OMEGA to the National Ignition Facility. Fusion Science and Technology, 2018, 73, 89-97.	1.1	12
65	Evolution of the Design and Fabrication of Astrophysics Targets for Turbulent Dynamo (TDYNO) Experiments on OMEGA. Fusion Science and Technology, 2018, 73, 434-445.	1.1	3
66	Raman Amplification with a Flying Focus. Physical Review Letters, 2018, 120, 024801.	7.8	52
67	Suppressing Two-Plasmon Decay with Laser Frequency Detuning. Physical Review Letters, 2018, 120, 135005.	7.8	36
68	Crossed-beam energy transfer: polarization effects and evidence of saturation. Plasma Physics and Controlled Fusion, 2018, 60, 054017.	2.1	17
69	Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA. Physical Review Letters, 2018, 120, 125001.	7.8	11
70	Ionization waves of arbitrary velocity driven by a flying focus. Physical Review A, 2018, 97, .	2.5	39
71	Experimental signatures of direct-laser-acceleration-assisted laser wakefield acceleration. Plasma Physics and Controlled Fusion, 2018, 60, 044012.	2.1	14
72	Spatiotemporal control of laser intensity. Nature Photonics, 2018, 12, 262-265.	31.4	149

#	Article	IF	CITATIONS
73	Single-shot frequency-resolved optical gating for retrieving the pulse shape of high energy picosecond pulses. Review of Scientific Instruments, 2018, 89, 103509.	1.3	2
74	Resonance absorption of a broadband laser pulse. Physics of Plasmas, 2018, 25, .	1.9	19
75	Implementation of a Faraday rotation diagnostic at the OMEGA laser facility. High Power Laser Science and Engineering, 2018, 6, .	4.6	6
76	Ray-based modeling of cross-beam energy transfer at caustics. Physical Review E, 2018, 98, .	2.1	16
77	Observation of Nonlocal Heat Flux Using Thomson Scattering. Physical Review Letters, 2018, 121, 125001.	7.8	36
78	Ionization Waves of Arbitrary Velocity. Physical Review Letters, 2018, 120, 225001.	7.8	39
79	Unabsorbed light beamlets for diagnosing cross-beam energy transfer. Review of Scientific Instruments, 2018, 89, 10E101.	1.3	3
80	Supersonic gas-jet characterization with interferometry and Thomson scattering on the OMEGA Laser System. Review of Scientific Instruments, 2018, 89, 10C103.	1.3	18
81	Implementation of a Wollaston interferometry diagnostic on OMEGA EP. Review of Scientific Instruments, 2018, 89, 10B107.	1.3	9
82	Collisionless shock acceleration of narrow energy spread ion beams from mixed species plasmas using <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext><mml:mtext> </mml:mtext> accelerators</mml:mrow></mml:math>	l:mtæ&t><ı	nm \$2 ni>ι⁄4
83	and Beams, 2018, 21, . Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo. Physics of Plasmas, 2017, 24, .	1.9	31
84	Robustness of raman plasma amplifiers and their potential for attosecond pulse generation. High Energy Density Physics, 2017, 23, 212-216.	1.5	4
85	A wave-based model for cross-beam energy transfer in direct-drive inertial confinement fusion. Physics of Plasmas, 2017, 24, .	1.9	40
86	Mitigation of hot electrons from laser-plasma instabilities in high-Z, highly ionized plasmas. Physics of Plasmas, 2017, 24, .	1.9	14
87	Initial experimental demonstration of the principles of a xenon gas shield designed to protect optical components from soft x-ray induced opacity (blanking) in high energy density experiments. Physics of Plasmas, 2017, 24, 032705.	1.9	2
88	Optimization of plasma amplifiers. Physical Review E, 2017, 95, 053211.	2.1	13
89	Mitigation of cross-beam energy transfer in symmetric implosions on OMEGA using wavelength detuning. Physics of Plasmas, 2017, 24, 062706.	1.9	30
90	Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility. Physical Review Letters, 2017, 118, 185003.	7.8	49

#	Article	IF	CITATIONS
91	Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions. Physical Review E, 2017, 95, 051202.	2.1	16
92	Picosecond time-resolved measurements of dense plasma line shifts. Physical Review E, 2017, 95, 063204.	2.1	34
93	Full-wave and ray-based modeling of cross-beam energy transfer between laser beams with distributed phase plates and polarization smoothing. Physics of Plasmas, 2017, 24, .	1.9	20
94	Simulations and measurements of hot-electron generation driven by the multibeam two-plasmon-decay instability. Physics of Plasmas, 2017, 24, .	1.9	24
95	National direct-drive program on OMEGA and the National Ignition Facility. Plasma Physics and Controlled Fusion, 2017, 59, 014008.	2.1	50
96	Angular filter refractometry analysis using simulated annealing. Review of Scientific Instruments, 2017, 88, 103510.	1.3	4
97	Study of shock waves and related phenomena motivated by astrophysics. Journal of Physics: Conference Series, 2016, 688, 012016.	0.4	3
98	Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA. Journal of Physics: Conference Series, 2016, 717, 012008.	0.4	8
99	Direct-drive implosion physics: Results from OMEGA and the National Ignition Facility. Journal of Physics: Conference Series, 2016, 688, 012006.	0.4	4
100	Laboratory astrophysical collisionless shock experiments on Omega and NIF. Journal of Physics: Conference Series, 2016, 688, 012084.	0.4	11
101	Polar-direct-drive experiments at the National Ignition Facility. Journal of Physics: Conference Series, 2016, 717, 012009.	0.4	1
102	The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility. Journal of Physics: Conference Series, 2016, 717, 012089.	0.4	11
103	A streaked X-ray spectroscopy platform for rapidly heated, near-solid density plasmas. Review of Scientific Instruments, 2016, 87, 11E312.	1.3	3
104	A pulse-front-tilt–compensated streaked optical spectrometer with high throughput and picosecond time resolution. Review of Scientific Instruments, 2016, 87, 11E535.	1.3	10
105	Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet. Nature Communications, 2016, 7, 13081.	12.8	46
106	Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited). Review of Scientific Instruments, 2016, 87, 11E401.	1.3	41
107	Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility. Physics of Plasmas, 2016, 23, .	1.9	19
108	Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility. Review of Scientific Instruments, 2016, 87, 11E510.	1.3	19

#	Article	IF	CITATIONS
109	Direct drive: Simulations and results from the National Ignition Facility. Physics of Plasmas, 2016, 23, 056305.	1.9	36
110	Measurements of hot-electron temperature in laser-irradiated plasmas. Physics of Plasmas, 2016, 23, .	1.9	15
111	Understanding the effects of laser imprint on plastic-target implosions on OMEGA. Physics of Plasmas, 2016, 23, .	1.9	38
112	Experimental demonstration of laser imprint reduction using underdense foams. Physics of Plasmas, 2016, 23, 042701.	1.9	21
113	Design of an extreme ultraviolet spectrometer suite to characterize rapidly heated solid matter. Review of Scientific Instruments, 2016, 87, 11E538.	1.3	1
114	Two-Plasmon Decay Mitigation in Direct-Drive Inertial-Confinement-Fusion Experiments Using Multilayer Targets. Physical Review Letters, 2016, 116, 155002.	7.8	27
115	Demonstration of Fuel Hot-Spot Pressure in Excess of 50ÂGbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA. Physical Review Letters, 2016, 117, 025001.	7.8	72
116	The design of the optical Thomson scattering diagnostic for the National Ignition Facility. Review of Scientific Instruments, 2016, 87, 11E549.	1.3	6
117	Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA. Physics of Plasmas, 2016, 23, .	1.9	69
118	X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions. Review of Scientific Instruments, 2016, 87, 11E340.	1.3	7
119	Laser-plasma interaction in direct-drive inertial confinement fusion. Journal of Physics: Conference Series, 2016, 717, 012040.	0.4	1
120	A high-resolving-power x-ray spectrometer for the OMEGA EP Laser (invited). Review of Scientific Instruments, 2016, 87, 11D504.	1.3	7
121	Channeling of multikilojoule high-intensity laser beams in an inhomogeneous plasma. Physical Review E, 2015, 91, 051101.	2.1	10
122	Precision Mapping of Laser-Driven Magnetic Fields and Their Evolution in High-Energy-Density Plasmas. Physical Review Letters, 2015, 114, 215003.	7.8	54
123	Collisionless shock experiments with lasers and observation of Weibel instabilities. Physics of Plasmas, 2015, 22, .	1.9	51
124	Implosion dynamics in direct-drive experiments. Plasma Physics and Controlled Fusion, 2015, 57, 014023.	2.1	9
125	Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows. Nature Physics, 2015, 11, 173-176.	16.7	236
126		1.9	52

#	Article	IF	CITATIONS
127	Beyond the gain exponent: Effect of damping, scale length, and speckle length on stimulated scatter. Physical Review E, 2015, 91, 031103.	2.1	14
128	Measurements of the Conduction-Zone Length and Mass Ablation Rate in Cryogenic Direct-Drive Implosions on OMEGA. Physical Review Letters, 2015, 114, 155002.	7.8	12
129	Use of external magnetic fields in hohlraum plasmas to improve laser-coupling. Physics of Plasmas, 2015, 22, .	1.9	45
130	Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering. Physical Review E, 2015, 91, 031104.	2.1	20
131	Time-resolved K $<$ sub $><$ i $>$ î $\pm<$ /i $><$ /sub $>$ spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: collisional and collective effects. Journal of Physics B: Atomic, Molecular and Optical Physics, 2015, 48, 224001.	1.5	9
132	Magnetic-field generation by the ablative nonlinear Rayleigh–Taylor instability. Journal of Plasma Physics, 2015, 81, .	2.1	5
133	Mass-ablation-rate measurements in direct-drive cryogenic implosions using x-ray self-emission images. Review of Scientific Instruments, 2014, 85, 11D616.	1.3	2
134	Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front. Physics of Plasmas, 2014, 21, 122702.	1.9	18
135	Polarimetry diagnostic on OMEGA EP using a 10-ps, 263-nm probe beam. Review of Scientific Instruments, 2014, 85, 11E611.	1.3	3
136	Nonuniformly Driven Two-Plasmon-Decay Instability in Direct-Drive Implosions. Physical Review Letters, 2014, 112, 145001.	7.8	29
137	Multiple-beam laser–plasma interactions in inertial confinement fusion. Physics of Plasmas, 2014, 21, .	1.9	79
138	Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA. Physics of Plasmas, 2014, 21, .	1.9	139
139	StarDriver: A Flexible Laser Driver for Inertial Confinement Fusion and High Energy Density Physics. Journal of Fusion Energy, 2014, 33, 476-488.	1.2	22
140	Measurements of electron density profiles using an angular filter refractometer. Physics of Plasmas, 2014, 21, .	1.9	33
141	Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA. Physics of Plasmas, 2013, 20, 082704.	1.9	35
142	Demonstration of the Improved Rocket Efficiency in Direct-Drive Implosions Using Different Ablator Materials. Physical Review Letters, 2013, 111, 245005.	7.8	33
143	Structure and Dynamics of Colliding Plasma Jets. Physical Review Letters, 2013, 111, 235003.	7.8	35
144	Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser Facility. Physics of Plasmas, 2013, 20, .	1.9	35

#	Article	IF	Citations
145	Laser-Beam Zooming to Mitigate Crossed-Beam Energy Losses in Direct-Drive Implosions. Physical Review Letters, 2013, 110, 145001.	7.8	31
146	Improving cryogenic deuterium–tritium implosion performance on OMEGA. Physics of Plasmas, 2013, 20, .	1.9	48
147	Polar-drive implosions on OMEGA and the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	28
148	Visualizing electromagnetic fields in laser-produced counter-streaming plasma experiments for collisionless shock laboratory astrophysics. Physics of Plasmas, 2013, 20, .	1.9	36
149	Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurations. Physics of Plasmas, 2013, 20, .	1.9	47
150	Measurements of the divergence of fast electrons in laser-irradiated spherical targets. Physics of Plasmas, 2013, 20, 092706.	1.9	30
151	Observation of Self-Similarity in the Magnetic Fields Generated by the Ablative Nonlinear Rayleigh-Taylor Instability. Physical Review Letters, 2013, 110, 185003.	7.8	30
152	High-power laser experiments to study collisionless shock generation. EPJ Web of Conferences, 2013, 59, 15001.	0.3	4
153	A reflective image-rotating periscope for spatially resolved Thomson-scattering experiments on OMEGA. Journal of Instrumentation, 2013, 8, C12009-C12009.	1.2	8
154	Plasma Refractometry Using Angular Spectral Filters on OMEGA EP., 2013,,.		0
155	Optical diagnostic suite (schlieren, interferometry, and grid image refractometry) on OMEGA EP using a 10-ps, 263-nm probe beam. Review of Scientific Instruments, 2012, 83, 10E523.	1.3	14
156	A reflective optical transport system for ultraviolet Thomson scattering from electron plasma waves on OMEGA. Review of Scientific Instruments, 2012, 83, 10E349.	1.3	36
157	Shell trajectory measurements from direct-drive implosion experiments. Review of Scientific Instruments, 2012, 83, 10E530.	1.3	36
158	Crossed-beam energy transfer in direct-drive implosions. Physics of Plasmas, 2012, 19, .	1.9	133
159	Laser–plasma interactions in direct-drive ignition plasmas. Plasma Physics and Controlled Fusion, 2012, 54, 124016.	2.1	31
160	Magnetic Field Generation by the Rayleigh-Taylor Instability in Laser-Driven Planar Plastic Targets. Physical Review Letters, 2012, 109, 115001.	7.8	42
161	Measurement of Radiative Shock Properties by X-Ray Thomson Scattering. Physical Review Letters, 2012, 108, 145001.	7.8	34
162	Characterization of single and colliding laser-produced plasma bubbles using Thomson scattering and proton radiography. Physical Review E, 2012, 86, 056407.	2.1	22

#	Article	IF	CITATIONS
163	Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments. Physical Review Letters, 2012, 108, 125003.	7.8	67
164	Experimental Validation of the Two-Plasmon-Decay Common-Wave Process. Physical Review Letters, 2012, 109, 155007.	7.8	57
165	Total energy loss to fast ablator-ions and target capacitance of direct-drive implosions on OMEGA. Applied Physics Letters, 2012, 101, 114102.	3.3	10
166	Saturation of the Two-Plasmon Decay Instability in Long-Scale-Length Plasmas Relevant to Direct-Drive Inertial Confinement Fusion. Physical Review Letters, 2012, 108, 165003.	7.8	58
167	Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas. Nature Physics, 2012, 8, 809-812.	16.7	118
168	Fast-electron generation in long-scale-length plasmas. Physics of Plasmas, 2012, 19, .	1.9	46
169	Characterizing counter-streaming interpenetrating plasmas relevant to astrophysical collisionless shocks. Physics of Plasmas, 2012, 19, .	1.9	101
170	Noncollective Scattering., 2011,, 69-102.		5
171	Ultraviolet Thomson scattering measurements of the electron and ion features with an energetic 263 nm probe. Journal of Instrumentation, 2011, 6, P08004-P08004.	1.2	11
172	Demonstration of a Narrow Energy Spread, <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>â^1/4</mml:mo><mml:mn>0.5</mml:mn><mml:mtext> </mml:mtext><mml:mtext><mml:mtext><mml:mtext></mml:mtext></mml:mtext></mml:mtext></mml:math>	xt> ã€ ‰ </td <td>mml:mtext></td>	mml:mtext>
173	Observation of Relativistic Effects in Collective Thomson Scattering. Physical Review Letters, 2010, 104, 105001.	7.8	41
174	Fully relativistic form factor for Thomson scattering. Physical Review E, 2010, 81, 036411.	2.1	21
175	Thomson-scattering measurements in the collective and noncollective regimes in laser produced plasmas (invited). Review of Scientific Instruments, 2010, 81, 10D523.	1.3	36
176	Laser wakefield acceleration at reduced density in the self-guided regime. Physics of Plasmas, 2010, 17, 056709.	1.9	28
177	Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility. Physics of Plasmas, 2010, 17, .	1.9	49
178	Self-Guided Laser Wakefield Acceleration beyond 1ÂGeV Using Ionization-Induced Injection. Physical Review Letters, 2010, 105, 105003.	7.8	338
179	Acceleration of Electrons by A Laser Wakefield Accelerator (LWFA) Operating in the Self-Guided Regime. , 2010, , .		0
180	Magnetically Controlled Optical Plasma Waveguide for Electron Acceleration. , 2009, , .		0

#	Article	lF	Citations
181	Direct Acceleration of Electrons in a Corrugated Plasma Channel. , 2009, , .		O
182	Study of x-ray radiation from a laser wakefield accelerator., 2009,,.		1
183	Measurements of the Critical Power for Self-Injection of Electrons in a Laser Wakefield Accelerator. Physical Review Letters, 2009, 103, 215006.	7.8	128
184	Lorentz Mapping of Magnetic Fields in Hot Dense Plasmas. Physical Review Letters, 2009, 103, 085001.	7.8	43
185	Observation of the Density Threshold Behavior for the Onset of Stimulated Raman Scattering in High-Temperature Hohlraum Plasmas. Physical Review Letters, 2009, 103, 045006.	7.8	32
186	Control of 2ï‰ (527â€,nm) stimulated Raman scattering in a steep density gradient plasma. Physics of Plasmas, 2009, 16, 062704.	1.9	8
187	Magnetically controlled plasma waveguide for laser wakefield acceleration. Plasma Physics and Controlled Fusion, 2009, 51, 024009.	2.1	17
188	Measurements of radiative shock properties using X-ray thomson scattering. , 2009, , .		0
189	High $\hat{\text{Nl}}\pm \text{x-ray}$ conversion efficiency from extended source gas jet targets irradiated by ultra short laser pulses. Applied Physics Letters, 2008, 92, .	3.3	29
190	Optical transmission of glass for the National Ignition Facility near backscatter imagers under x-ray exposure. Review of Scientific Instruments, 2008, 79, 10F549.	1.3	4
191	A pulsed-laser calibration system for the laser backscatter diagnostics at the Omega laser. Review of Scientific Instruments, 2008, 79, 10F548.	1.3	12
192	Suppression of Stimulated Brillouin Scattering by Increased Landau Damping in Multiple-Ion-Species Hohlraum Plasmas. Physical Review Letters, 2008, 100, 105001.	7.8	43
193	Green Frequency-Doubled Laser-Beam Propagation in High-Temperature Hohlraum Plasmas. Physical Review Letters, 2008, 100, 045002.	7.8	27
194	Three-Dimensional Modeling of Stimulated Brillouin Scattering in Ignition-Scale Experiments. Physical Review Letters, 2008, 100, 255001.	7.8	10
195	Multicentimeter long high density magnetic plasmas for optical guiding. Review of Scientific Instruments, 2008, 79, 10F550.	1.3	8
196	Energetics of multiple-ion species hohlraum plasmas. Physics of Plasmas, 2008, 15, .	1.9	26
197	Temporal dispersion of a spectrometer. Review of Scientific Instruments, 2008, 79, 10F545.	1.3	31
198	Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experiments. Physics of Plasmas, 2008, 15, 056313.	1.9	19

#	Article	IF	CITATIONS
199	Ray-based calculations of backscatter in laser fusion targets. Physics of Plasmas, 2008, 15, .	1.9	51
200	Pushing the Limits of Plasma Length in Inertial-Fusion Laser-Plasma Interaction Experiments. Physical Review Letters, 2008, 100, 015002.	7.8	13
201	Direct Measurements of an Increased Threshold for Stimulated Brillouin Scattering with Polarization Smoothing in Ignition Hohlraum Plasmas. Physical Review Letters, 2008, 101, 115002.	7.8	27
202	Mitigation of stimulated Raman scattering in hohlraum plasmas. Journal of Physics: Conference Series, 2008, 112, 022030.	0.4	6
203	Laser-plasma interaction in ignition relevant plasmas: benchmarking our 3d modelling capabilities versus recent experiments. Journal of Physics: Conference Series, 2008, 112, 022032.	0.4	1
204	Role of hydrodynamics simulations in laser-plasma interaction predictive capability. Physics of Plasmas, 2007, 14, 056304.	1.9	24
205	Quenching of the Nonlocal Electron Heat Transport by Large External Magnetic Fields in a Laser-Produced Plasma Measured with Imaging Thomson Scattering. Physical Review Letters, 2007, 98, 135001.	7.8	84
206	Ideal Laser-Beam Propagation through High-Temperature Ignition Hohlraum Plasmas. Physical Review Letters, 2007, 98, 085001.	7.8	59
207	Laser beam propagation through inertial confinement fusion hohlraum plasmas. Physics of Plasmas, 2007, 14, 055705.	1.9	25
208	Benchmark Measurements of the Ionization Balance of Non-Local-Thermodynamic-Equilibrium Gold Plasmas. Physical Review Letters, 2007, 99, 195001.	7.8	56
209	Experiments and multiscale simulations ofÂlaser propagation through ignition-scaleÂplasmas. Nature Physics, 2007, 3, 716-719.	16.7	72
210	The first target experiments on the National Ignition Facility. European Physical Journal D, 2007, 44, 273-281.	1.3	11
211	Laboratory Observation of Secondary Shock Formation Ahead of a Strongly Radiative Blast Wave. Astrophysics and Space Science, 2007, 307, 219-225.	1.4	7
212	Plasma filling in reduced-scale hohlraums irradiated with multiple beam cones. Physics of Plasmas, 2006, 13, 112701.	1.9	26
213	Laser light backscatter from intermediate and high Z plasmas. Physics of Plasmas, 2006, 13, 092702.	1.9	2
214	Laboratory observation of secondary shock formation ahead of a strongly radiative blast wave. Physics of Plasmas, 2006, 13, 022105.	1.9	27
215	Thomson-scattering measurements of high electron temperature hohlraum plasmas for laser-plasma interaction studies. Physics of Plasmas, 2006, 13, 052704.	1.9	53
216	Polarization smoothing on the national ignition facility. European Physical Journal Special Topics, 2006, 133, 717-720.	0.2	21

#	Article	IF	CITATIONS
217	3ω transmitted beam diagnostic at the Omega Laser Facility. Review of Scientific Instruments, 2006, 77, 10E507.	1.3	13
218	Thomson-scattering techniques to diagnose local electron and ion temperatures, density, and plasma wave amplitudes in laser produced plasmas (invited). Review of Scientific Instruments, 2006, 77, 10E522.	1.3	47
219	Secondary shock formation in xenon-nitrogen mixtures. Physics of Plasmas, 2006, 13, 112101.	1.9	6
220	High magnetic field generation for laser-plasma experiments. Review of Scientific Instruments, 2006, 77, 114703.	1.3	36
221	Thomson scattering from a shock front. Review of Scientific Instruments, 2006, 77, 10E504.	1.3	11
222	Implementation of imaging Thomson scattering on the Omega Laser. Review of Scientific Instruments, 2006, 77, 10E520.	1.3	29
223	The first experiments on the national ignition facility. European Physical Journal Special Topics, 2006, 133, 43-45.	0.2	1
224	X-ray flux and X-ray burnthrough experiments on reduced-scale targets at the NIF and OMEGA lasers. European Physical Journal Special Topics, 2006, 133, 1205-1208.	0.2	3
225	Efficient coupling of 527 nm laser beam power to a long scalelength plasma. European Physical Journal Special Topics, 2006, 133, 321-324.	0.2	0
226	Laser coupling to reduced-scale targets at NIF Early Light. European Physical Journal Special Topics, 2006, 133, 237-241.	0.2	0
227	Laboratory Observation of Secondary Shock Formation Ahead of a Strongly Radiative Blast Wave. , 2006, , 219-225.		0
228	Laboratory Simulations of Supernova Shockwave Propagation. Astrophysics and Space Science, 2005, 298, 61-67.	1.4	10
229	Laboratory simulations of supernova shockwaves: Formation of a second shock ahead of a radiative shock. AIP Conference Proceedings, 2005, , .	0.4	0
230	First laser–plasma interaction and hohlraum experiments on the National Ignition Facility. Plasma Physics and Controlled Fusion, 2005, 47, B405-B417.	2.1	18
231	Intensity Limits for Propagation of0.527  μmLaser Beams through Large-Scale-Length Plasmas for Inerti Confinement Fusion. Physical Review Letters, 2005, 94, 085005.	al 7.8	26
232	Measurement of the Dispersion of Thermal Ion-Acoustic Fluctuations in High-Temperature Laser Plasmas Using Multiple-Wavelength Thomson Scattering. Physical Review Letters, 2005, 95, 195005.	7.8	29
233	Laser coupling to reduced-scale hohlraum targets at the Early Light Program of the National Ignition Facility. Physics of Plasmas, 2005, 12, 056305.	1.9	23
234	Radiation-Driven Hydrodynamics of High-ZHohlraums on the National Ignition Facility. Physical Review Letters, 2005, 95, 215004.	7.8	45

#	Article	IF	CITATIONS
235	Experiments on the Scaling of Ionization Balance vs. Electron and Radiation Temperature in Non-LTE Gold Plasmas. AIP Conference Proceedings, 2004, , .	0.4	2
236	Effects of ion trapping on crossed-laser-beam stimulated Brillouin scattering. Physics of Plasmas, 2004, 11, 231-244.	1.9	87
237	Observation of the Parametric Two-lon Decay Instability with Thomson Scattering. Physical Review Letters, 2004, 93, 045004.	7.8	45
238	Direct Observation of the Saturation of Stimulated Brillouin Scattering by Ion-Trapping-Induced Frequency Shifts. Physical Review Letters, 2004, 93, 035001.	7.8	24
239	Implementation of a high energy 4ω probe beam on the Omega laser. Review of Scientific Instruments, 2004, 75, 3906-3908.	1.3	38
240	Full aperture backscatter station measurement system on the National Ignition Facility. Review of Scientific Instruments, 2004, 75, 4177-4179.	1.3	17
241	Calibration of initial measurements from the full aperture backscatter system on the National Ignition Facility. Review of Scientific Instruments, 2004, 75, 4174-4176.	1.3	11
242	Full-aperture backscatter measurements on the National Ignition Facility. Review of Scientific Instruments, 2004, 75, 4168-4170.	1.3	39
243	Effect of Nonlocal Transport on Heat-Wave Propagation. Physical Review Letters, 2004, 92, 205006.	7.8	68
244	Modeling the nonlinear saturation of stimulated Brillouin backscatter in laser heated plasmas. Physics of Plasmas, 2003, 10, 1822-1828.	1.9	41
245	Direct Observation of Stimulated-Brillouin-Scattering Detuning by a Velocity Gradient. Physical Review Letters, 2003, 90, 155003.	7.8	14
246	Stimulated Brillouin scattering in the saturated regime. Physics of Plasmas, 2003, 10, 1846-1853.	1.9	29
247	X-ray scattering from solid density plasmas. Physics of Plasmas, 2003, 10, 2433-2441.	1.9	69
248	Measurements of Nonlinear Growth of Ion-Acoustic Waves in Two-Ion-Species Plasmas with Thomson Scattering. Physical Review Letters, 2002, 88, 105003.	7.8	78
249	Observation of ion heating by stimulated-Brillouin-scattering-driven ion-acoustic waves using Thomson scattering. Physics of Plasmas, 2002, 9, 4709-4718.	1.9	18