List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9480962/publications.pdf Version: 2024-02-01

PAOLO LICO

#	Article	IF	CITATIONS
1	Nanoelectrode ensemble immunosensor platform for the anodic detection of anti-tissue transglutaminase isotype IgA. Journal of Electroanalytical Chemistry, 2022, 906, 115984.	1.9	1
2	Advanced Electrochemical and Opto-Electrochemical Biosensors for Quantitative Analysis of Disease Markers and Viruses. Biosensors, 2022, 12, 296.	2.3	0
3	SERS using nanostarâ€inâ€eavity structures. Journal of Raman Spectroscopy, 2022, 53, 1871-1879.	1.2	3
4	Bioanalytical Chemistry. , 2021, , .		5
5	Surface Enhanced Raman Spectroscopy With Electrodeposited Copper Ultramicro-Wires With/Without Silver Nanostars Decoration. Nanomaterials, 2021, 11, 518.	1.9	8
6	Electrochemical preconcentration coupled with spectroscopic techniques for trace lead analysis in olive oils. Talanta, 2020, 210, 120667.	2.9	11
7	Ag-Nanostars for the Sensitive SERS Detection of Dyes in Artistic Cross-Sections—Madonna della Misericordia of the National Gallery of Parma: A Case Study. Heritage, 2020, 3, 1344-1359.	0.9	12
8	Preparation and characterization of Ag-nanostars@Au-nanowires hierarchical nanostructures for highly sensitive surface enhanced Raman spectroscopy. Nano Express, 2020, 1, 020006.	1.2	12
9	Review—Electrochemical and SERS Sensors for Cultural Heritage Diagnostics and Conservation: Recent Advances and Prospects. Journal of the Electrochemical Society, 2020, 167, 037548.	1.3	21
10	Editorial Overview: Sensors and Biosensors: New sense for electrochemical sensors. Current Opinion in Electrochemistry, 2019, 16, A4-A7.	2.5	2
11	Plasma Activation of Copper Nanowires Arrays for Electrocatalytic Sensing of Nitrate in Food and Water. Nanomaterials, 2019, 9, 150.	1.9	11
12	Nanoelectrode ensemble immunosensing for the electrochemical identification of ovalbumin in works of art. Electrochimica Acta, 2019, 312, 72-79.	2.6	8
13	Recent advances in sensing and biosensing with arrays of nanoelectrodes. Current Opinion in Electrochemistry, 2019, 16, 106-116.	2.5	25
14	Electrochemical Immunosensor Based on Nanoelectrode Ensembles for the Serological Analysis of IgG-type Tissue Transglutaminase. Sensors, 2019, 19, 1233.	2.1	14
15	Tailor-made 3D-nanoelectrode ensembles modified with molecularly imprinted poly(o-phenylenediamine) for the sensitive detection of L-arabitol. Sensors and Actuators B: Chemical, 2019, 284, 250-257.	4.0	15
16	A customised atmospheric pressure plasma jet for conservation requirements. IOP Conference Series: Materials Science and Engineering, 2018, 364, 012079.	0.3	12
17	Impedimetric sensing of the immuno-enzymatic reaction of gliadin with a collagen-modified electrode. Electrochemistry Communications, 2018, 97, 51-55.	2.3	9
18	Electrochemosensor for Trace Analysis of Perfluorooctanesulfonate in Water Based on a Molecularly Imprinted Poly(<i>o</i> -phenylenediamine) Polymer. ACS Sensors, 2018, 3, 1291-1298.	4.0	96

#	Article	IF	CITATIONS
19	Recent Advances in Electrochemiluminescence with Quantum Dots and Arrays of Nanoelectrodes. ChemElectroChem, 2017, 4, 1663-1676.	1.7	66
20	Electrochemical preparation of standard solutions of Pb(II) ions in ionic liquid for analysis of hydrophobic samples: The olive oil case. Talanta, 2017, 172, 133-138.	2.9	3
21	Trace Electroanalysis of Perfluorinated Alkyl Substances with Molecularly Imprinted Polymer Sensors. Proceedings (mdpi), 2017, 1, .	0.2	1
22	Nanobiosensing with Arrays and Ensembles of Nanoelectrodes. Sensors, 2017, 17, 65.	2.1	22
23	Electrochemical Immunosensor for Detection of IgY in Food and Food Supplements. Chemosensors, 2017, 5, 10.	1.8	8
24	Electrochemical Immunosensors and Aptasensors. Chemosensors, 2017, 5, 13.	1.8	7
25	Microscopic imaging and tuning of electrogenerated chemiluminescence with boron-doped diamond nanoelectrode arrays. Analytical and Bioanalytical Chemistry, 2016, 408, 7085-7094.	1.9	49
26	Closed Bipolar Electrochemistry for the Lowâ€Potential Asymmetrical Functionalization of Micro―and Nanowires. ChemElectroChem, 2016, 3, 450-456.	1.7	24
27	Using Electrochemical SERS to Measure the Redox Potential of Drug Molecules Bound to dsDNA—a Study of Mitoxantrone. Electrochimica Acta, 2016, 187, 684-692.	2.6	28
28	Miniaturized Enzymatic Biosensor via Biofunctionalization of the Insulator of Nanoelectrode Ensembles. Electroanalysis, 2015, 27, 2187-2193.	1.5	15
29	Arrays of TiO2 Nanowires as Photoelectrochemical Sensors for Hydrazine Detection. Chemosensors, 2015, 3, 146-156.	1.8	17
30	Arrays of templated TiO2nanofibres as improved photoanodes for water splitting under visible light. Nanotechnology, 2015, 26, 165402.	1.3	13
31	Ensembles of Gold Nanowires for the Anodic Stripping Voltammetric Determination of Inorganic Arsenic. Journal of Nanoscience and Nanotechnology, 2015, 15, 3417-3422.	0.9	8
32	Detection of DNA Hybridization by Methylene Blue Electrochemistry at Activated Nanoelectrode Ensembles. Journal of Nanoscience and Nanotechnology, 2015, 15, 3437-3442.	0.9	26
33	A Sensitive Electrochemiluminescence Immunosensor for Celiac Disease Diagnosis Based on Nanoelectrode Ensembles. Analytical Chemistry, 2015, 87, 12080-12087.	3.2	62
34	Speciation of Trace Levels of Chromium with Bismuth Modified Pyrolyzed Photoresist Carbon Electrodes. Electroanalysis, 2015, 27, 128-134.	1.5	9
35	Arrays of copper nanowire electrodes: Preparation, characterization and application as nitrate sensor. Sensors and Actuators B: Chemical, 2015, 207, 186-192.	4.0	99
36	Electroanalytical Applications of Sensors Based on Pyrolized Photoresist Carbon Electrodes. Lecture Notes in Electrical Engineering, 2015, , 135-139.	0.3	1

#	Article	IF	CITATIONS
37	Asymmetric Modification of TiO ₂ Nanofibers with Gold by Electricâ€Fieldâ€Assisted Photochemistry. ChemElectroChem, 2014, 1, 2048-2051.	1.7	20
38	Sensor Arrays: Arrays of Micro- and Nanoelectrodes. Nanostructure Science and Technology, 2014, , 583-613.	0.1	1
39	Asymmetrical modification of carbon microfibers by bipolar electrochemistry in acetonitrile. Electrochimica Acta, 2014, 116, 421-428.	2.6	21
40	Pyrolyzed Photoresist Carbon Electrodes in Aprotic Solvent: Bilirubin Electrochemistry and Interaction with Electrogenerated Superoxide. Electrochimica Acta, 2014, 147, 401-407.	2.6	10
41	Electrochemical immunosensor based on ensemble of nanoelectrodes for immunoglobulin IgY detection: Application to identify hen's egg yolk in tempera paintings. Biosensors and Bioelectronics, 2014, 52, 403-410.	5.3	37
42	Asymmetric Modification of TiO2Nanofibers with Gold by Electric-Field-Assisted Photochemistry. ChemElectroChem, 2014, 1, 2033-2033.	1.7	0
43	Nafion® as advanced immobilisation substrate for the voltammetric analysis of electroactive microparticles: the case of some artistic colouring agents. Analytical and Bioanalytical Chemistry, 2013, 405, 3603-3610.	1.9	9
44	Ensembles of nanoelectrodes modified with gold nanoparticles: characterization and application to DNA-hybridization detection. Analytical and Bioanalytical Chemistry, 2013, 405, 995-1005.	1.9	13
45	Simultaneous Adsorptive Cathodic Stripping Voltammetric Determination of Nickel(II) and Cobalt(II) at an In Situ Bismuthâ€Modified Gold Electrode. Electroanalysis, 2013, 25, 2471-2479.	1.5	20
46	Development of electrochemical biosensors by e-beam lithography for medical diagnostics. Microelectronic Engineering, 2013, 111, 320-324.	1.1	18
47	Optimization of Carbon Electrodes Derived from Epoxy-based Photoresist. Journal of the Electrochemical Society, 2013, 160, B132-B137.	1.3	49
48	Bioelectroanalysis with nanoelectrode ensembles and arrays. Analytical and Bioanalytical Chemistry, 2013, 405, 3715-3729.	1.9	45
49	Functionalized ensembles of nanoelectrodes as affinity biosensors for DNA hybridization detection. Biosensors and Bioelectronics, 2013, 40, 265-270.	5.3	43
50	Bismuth modified gold nanoelectrode ensemble for stripping voltammetric determination of lead. Electrochemistry Communications, 2012, 24, 28-31.	2.3	20
51	Ion Exchange Voltammetry. , 2012, , 403-435.		1
52	Electrochemical synthesis and characterization of hierarchically branched ZnO nanostructures on ensembles of gold nanowires. Electrochimica Acta, 2012, 78, 539-546.	2.6	14
53	Electroanalysis of Trace Inorganic Arsenic with Gold Nanoelectrode Ensembles. Electroanalysis, 2012, 24, 798-806.	1.5	50
54	Modification of nanoelectrode ensembles by thiols and disulfides to prevent non specific adsorption of proteins. Electrochimica Acta, 2011, 56, 7718-7724.	2.6	26

#	Article	lF	CITATIONS
55	Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography. Nanotechnology, 2011, 22, 185305.	1.3	41
56	Arrays of Nanoelectrodes: Critical Evaluation of Geometrical and Diffusion Characteristics with Respect to Electroanalytical Applications. ECS Transactions, 2010, 25, 33-38.	0.3	3
57	Biofunctionalization of Nanoelectrode Ensembles: Protection of the Nanoelectrodes with Self-assembled Monolayers. ECS Transactions, 2010, 25, 1-9.	0.3	3
58	Electrochemiluminescence of loaded in Nafion Langmuir–Blodgett films: Role of the interfacial ultrathin film. Journal of Electroanalytical Chemistry, 2010, 640, 35-41.	1.9	46
59	Diffusion regimes at nanoelectrode ensembles in different ionic liquids. Electrochimica Acta, 2010, 55, 2865-2872.	2.6	36
60	Nanoelectrode ensembles for the direct voltammetric determination of trace iodide in water. International Journal of Environmental Analytical Chemistry, 2010, 90, 747-759.	1.8	15
61	Fabrication of a Macroporous Microwell Array for Surfaceâ€Enhanced Raman Scattering. Advanced Functional Materials, 2009, 19, 3129-3135.	7.8	46
62	Electrochemical Behavior of Nanoelectrode Ensembles in the Ionic Liquid [BMIm][BF ₄]. Electroanalysis, 2009, 21, 392-398.	1.5	7
63	Nanoelectrochemical Immunosensors for Protein Detection. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 178-188.	0.2	0
64	Nanoelectrode ensembles as recognition platform for electrochemical immunosensors. Biosensors and Bioelectronics, 2008, 23, 1900-1903.	5.3	77
65	Epifluorescence Imaging of Electrochemically Switchable Langmuirâ^'Blodgett Films of Nafion. Langmuir, 2008, 24, 6367-6374.	1.6	34
66	Clinical trials: Electrochemical nanobiosensors and protein detection. European Journal of Nanomedicine, 2008, 1, .	0.6	9
67	Electrochemical nanobiosensors and protein detection. European Journal of Nanomedicine, 2008, 1, 33-36.	0.6	4
68	Towards a Better Understanding of Gold Electroless Deposition in Track-Etched Templates. Chemistry of Materials, 2007, 19, 5955-5964.	3.2	83
69	TEMPLATE DEPOSITION OF METALS. , 2007, , 678-709.		21
70	CaracterÃsticas ópticas e morfológicas de nanoestruturas de ouro. Quimica Nova, 2007, 30, .	0.3	4
71	3D-Ensembles of Gold Nanowires: Preparation, Characterization and Electroanalytical Peculiarities. Electroanalysis, 2007, 19, 227-236.	1.5	89
72	Conical nanopore membranes: solvent shaping of nanopores. Nanotechnology, 2006, 17, 3951-3956.	1.3	81

#	Article	IF	CITATIONS
73	Aplicações de nanoeletrodos como sensores na QuÃmica AnalÃtica. Quimica Nova, 2006, 29, 1054-1060.	0.3	10
74	Composite films of poly-(ester-sulphonated) and poly-(3-methylthiophene) for ion-exchange voltammetry in acetonitrile solutions. Electrochimica Acta, 2006, 51, 2153-2160.	2.6	6
75	Ion-exchange voltammetry of tris(2,2′-bipyridine) nickel(II), cobalt(II), and Co(salen) at polyestersulfonated ionomer coated electrodes in acetonitrile: Reactivity of the electrogenerated low-valent complexes. Electrochimica Acta, 2006, 52, 958-964.	2.6	26
76	Gold nanoelectrode ensembles for direct trace electroanalysis of iodide. Analytica Chimica Acta, 2006, 575, 16-24.	2.6	64
77	Determination of Iodide and Idoxuridine at a Glutaraldehyde-Cross-Linked Poly-L-Lysine Modified Glassy Carbon Electrode. Electroanalysis, 2005, 17, 1309-1316.	1.5	18
78	Polycyclic aromatic hydrocarbons degradation by composting in a soot-contaminated alkaline soil. Journal of Hazardous Materials, 2005, 126, 141-148.	6.5	35
79	Electrochemistry of cytochrome c incorporated in Langmuir–Blodgett films of Nafion® and Eastman AQ 55®. Bioelectrochemistry, 2005, 66, 29-34.	2.4	24
80	SULFIDE AS A CONFOUNDING FACTOR IN TOXICITY TESTS WITH THE SEA URCHIN PARACENTROTUS LIVIDUS: COMPARISONS WITH CHEMICAL ANALYSIS DATA. Environmental Toxicology and Chemistry, 2004, 23, 396.	2.2	19
81	Langmuir–Blodgett films of different ionomeric polymers deposited on electrode surfaces. Electrochimica Acta, 2004, 49, 3785-3793.	2.6	26
82	Seasonal cycling of mercury and monomethyl mercury in the Venice Lagoon (Italy). Marine Chemistry, 2004, 91, 85-99.	0.9	75
83	Voltammetry of redox analytes at trace concentrations with nanoelectrode ensembles. Talanta, 2004, 62, 1055-1060.	2.9	59
84	A comparison of the speciation and fate of mercury in two contaminated coastal marine ecosystems: The Venice Lagoon (Italy) and Lavaca Bay (Texas). Limnology and Oceanography, 2004, 49, 367-375.	1.6	30
85	Application of ultra clean sampling and analysis methods for the speciation of mercury in the Venice lagoon (Italy). European Physical Journal Special Topics, 2003, 107, 887-890.	0.2	5
86	Direct voltammetry of cytochrome c at trace concentrations with nanoelectrode ensembles. Journal of Electroanalytical Chemistry, 2003, 560, 51-58.	1.9	60
87	Preparation and voltammetric characterization of electrodes coated with Langmuir-Schaefer ultrathin films of Nafion®. Journal of the Brazilian Chemical Society, 2003, 14, 517-522.	0.6	30
88	Fabrication and physico-chemical properties of Nafion Langmuir–Schaefer films. Physical Chemistry Chemical Physics, 2002, 4, 4036-4043.	1.3	45
89	A polypyrrole/Fe(CN)63â^'/4â^'-coated piezoelectric sensor for Cr(VI). Synthetic Metals, 2002, 130, 135-137.	2.1	7
90	Ionomer-Coated Electrodes and Nanoelectrode Ensembles as Electrochemical Environmental Sensors: Recent Advances and Prospects. ChemPhysChem, 2002, 3, 917-925.	1.0	114

#	Article	IF	CITATIONS
91	Ion-exchange voltammetry and electrocatalytic sensing capabilities of cytochrome c at polyestersulfonated ionomer coated glassy carbon electrodes. Biosensors and Bioelectronics, 2002, 17, 479-487.	5.3	28
92	Iron(II) and iron(III) determination by potentiometry and ion-exchange voltammetry at ionomer-coated electrodes. Analytica Chimica Acta, 2002, 474, 147-160.	2.6	49
93	Electrochemical measurement of mercury concentration profiles in the pore-waters of sediments of the Venice Lagoon by ion-exchange voltammetry at polymer modified electrodes. Annali Di Chimica, 2002, 92, 301-11.	0.6	1
94	Nafion Coated Electrodes as Voltammetric Sensors for Iron Analysis in Sediments and Pore Waters: an Example from the Lagoon of Venice. Sensors, 2001, 1, 102-113.	2.1	14
95	Trace Iron Determination by Cyclic and Multiple Square-Wave Voltammetry at Nafion Coated Electrodes. Applicationto Pore-Water Analysis. Electroanalysis, 2001, 13, 661-668.	1.5	38
96	Determination of mercury in process and lagoon waters by inductively coupled plasma-mass spectrometric analysis after electrochemical preconcentration: comparison with anodic stripping at gold and polymer coated electrodes. Analytica Chimica Acta, 2001, 434, 291-300.	2.6	65
97	Advances in multiple square wave techniques for ion-exchange voltammetry at ultratrace levels: the europium(III) case. Journal of Electroanalytical Chemistry, 2001, 498, 117-126.	1.9	29
98	Electrochemistry of phenothiazine and methylviologen biosensor electron-transfer mediators at nanoelectrode ensembles. Journal of Electroanalytical Chemistry, 2000, 491, 166-174.	1.9	96
99	Multiple square wave voltammetry of nanomolar and subnanomolar concentrations of europium (III) at polymer-coated electrodes. Electrochemistry Communications, 2000, 2, 175-179.	2.3	18
100	Preparations, Structures, and Electrochemical Studies of Aryldiazene Complexes of Rhenium:Â Syntheses of the First Heterobinuclear and Heterotrinuclear Derivatives with Bis(diazene) or Bis(diazenido) Bridging Ligands. Inorganic Chemistry, 2000, 39, 3265-3279.	1.9	26
101	Monitoring Sulphur Species and Metal Ions in Salt-Marsh Pore-Waters by Using an In-Situ Sampler. International Journal of Environmental Analytical Chemistry, 1999, 73, 129-143.	1.8	11
102	Factors influencing the ion-exchange preconcentration and voltammetric behaviour of redox cations at polyestersulfonated ionomer coated electrodes in acetonitrile solutions. Journal of Electroanalytical Chemistry, 1999, 460, 38-45.	1.9	17
103	Determination of methylmercury at NafionÂ $^{\odot}$ coated electrodes by single and multiple pulse voltammetric techniques. Journal of Electroanalytical Chemistry, 1999, 467, 193-202.	1.9	23
104	Determination of Trace Mercury in Saltwaters at Screen-Printed Electrodes Modified with Sumichelate Q10R. Electroanalysis, 1998, 10, 1017-1021.	1.5	103
105	Electrochemical Preparation and Characterization of an Anion-Permselective Composite Membrane for Sensor Technology. Electroanalysis, 1998, 10, 1168-1173.	1.5	11
106	Nitrate Biosensor Based on the Ultrathin-Film Composite Membrane Concept. Analytical Chemistry, 1998, 70, 2163-2166.	3.2	73
107	Reactivity of Hydrides FeH2(CO)2P2(P = Phosphites) with Aryldiazonium Cations:Â Preparation, Characterization, X-ray Crystal Structure, and Electrochemical Studies of Mono- and Binuclear Aryldiazenido Complexes. Inorganic Chemistry, 1998, 37, 5602-5610.	1.9	26
108	Seasonal and depth variability of reduced sulphur species and metal ions in mud-flat pore-waters of the Venice lagoon. Marine Chemistry, 1997, 59, 127-140.	0.9	26

#	Article	IF	CITATIONS
109	Electroanalytical study on the ion-exchange voltammetric behaviour of Hg(II) at Tosflex®-coated glassy carbon electrodes. Journal of Electroanalytical Chemistry, 1997, 427, 113-121.	1.9	30
110	Ion-exchange voltammetry of trace mercury(II) at glassy carbon electrodes coated with a cationic polypyrrole derivative. Application to pore-waters analysis. Electroanalysis, 1997, 9, 1153-1158.	1.5	40
111	Ion-Exchange Voltammetry at Polymer Film-Coated Nanoelectrode Ensembles. Analytical Chemistry, 1996, 68, 4160-4165.	3.2	86
112	Binuclear Iron and Ruthenium Complexes with Bis(diazene) or Bis(diazenido) Bridging Ligands:Â Synthesis, Characterization, X-ray Crystal Structure, and Electrochemical Studies. Inorganic Chemistry, 1996, 35, 6245-6253.	1.9	32
113	Ion-exchange voltammetry of tris(2,2′-bipyridyl) ruthenium(II), iron(II), osmium(II) and tris(2,2′-bipyrazyl) ruthenium(II) in acetonitrile solutions at poly(ester-sulphonate) coated electrodes. Journal of Electroanalytical Chemistry, 1996, 404, 89-97.	1.9	13
114	Use of Nafion® coated carbon disk microelectrodes in solution without and with different concentrations of supporting electrolyte. Journal of Electroanalytical Chemistry, 1996, 418, 29-34.	1.9	12
115	Voltammetric determination of trace mercury in chloride media at glassy carbon electrodes modified with polycationic ionomers. Analytica Chimica Acta, 1995, 305, 74-82.	2.6	80
116	Nitrate detection at Nafion-modified electrodes incorporating ytterbium and uranyl electrocatalysts. Electroanalysis, 1995, 7, 129-131.	1.5	8
117	Ion-exchange voltammetry at polymer-coated electrodes: Principles and analytical prospects. Electroanalysis, 1995, 7, 1105-1113.	1.5	113
118	A new device for in-situ pore-water sampling. Marine Chemistry, 1995, 49, 233-239.	0.9	24
119	Electrochemical behaviour of cobalt(I) hydrides. Journal of the Chemical Society Dalton Transactions, 1994, , 695.	1.1	2
120	Ion-exchange voltammetry of copper ions in chloride media at glassy carbon electrodes modified with polycationic ionomers. Analytica Chimica Acta, 1993, 273, 229-236.	2.6	32
121	Mercury and methylmercury, in individual zooplankton: Implications for bioaccumulation. Limnology and Oceanography, 1992, 37, 1313-1318.	1.6	294
122	On the Chemical Form of Mercury in Edible Fish and Marine Invertebrate Tissue. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49, 1010-1017.	0.7	1,033
123	Electrochemical behaviour and preconcentration of uranyl(VI) at Nafion-coated glassy carbon electrodes. Journal of Electroanalytical Chemistry, 1992, 324, 145-159.	1.9	30
124	Voltammetric determination of the titrable acidity of milk using a platinum microelectrode. Electroanalysis, 1992, 4, 93-96.	1.5	5
125	Determination of trace amounts of Eu3+ and Yb3+ ions at Nafion-coated thin mercury film electrodes. Analytica Chimica Acta, 1991, 244, 29-38.	2.6	28
126	Voltammetric probe of milk samples by using a platinum microelectrode. Analytica Chimica Acta, 1990, 238, 357-366.	2.6	9

#	Article	IF	CITATIONS
127	Electrochemical oxidation of ferrocene in naturally occurring molecular assemblies at microdisc electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 295, 95-111.	0.3	6
128	Electrochemistry of Yb3+ and Eu3+ at Nafion modified electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1990, 291, 187-199.	0.3	24
129	Determination of heavy metals in real samples by anodic stripping voltammetry with mercury microelectrodes. Analytica Chimica Acta, 1989, 219, 19-26.	2.6	59
130	The use of microelectrodes for studying the process involved in 1-naphthylamine oxidation in dimethyl sulphoxide. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 267, 129-140.	0.3	13
131	Determination of heavy metals in real samples by anodic stripping voltammetry with mercury microelectrodes. Analytica Chimica Acta, 1989, 219, 9-18.	2.6	75
132	Poly(2-vinylpyrazine) as a soluble polymeric ligand and as an electrode coating. Reactions with pentacyanoferrate(II). Analytical Chemistry, 1989, 61, 1799-1805.	3.2	23
133	Oxidation potentials of electrolyte solutions for lithium cells. Electrochimica Acta, 1988, 33, 47-50.	2.6	56
134	Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection. Analytica Chimica Acta, 1988, 208, 151-161.	2.6	805
135	Simultaneous determination of concentration, diffusion coefficient and number of electrons for electroactive species by combining suitable electroanalytical measurements. Analytica Chimica Acta, 1988, 211, 325-331.	2.6	6
136	Electrochemical study of triscyclopentadienyluranium complexes. Inorganica Chimica Acta, 1988, 147, 123-126.	1.2	25
137	An electrochemical investigation of the interaction between the superoxide ion and cations of group 2a in aqueous solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 246, 155-163.	0.3	2
138	Determination of residual aromatic amine hydrochlorides in process samples of di-isocyanate used in the manufacture of polyurethane A comparison of electroanalytical methods. Talanta, 1988, 35, 379-383.	2.9	1
139	Acid-base equilibria in organic solvents. Analytica Chimica Acta, 1988, 208, 207-217.	2.6	10
140	An electroanalytical investigation on the nickel-promoted electrochemical conversion of CO2 to CO. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 219, 259-271.	0.3	51
141	process involving very fast consecutive chemical reactions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 230, 165-176.	0.3	0
142	Distribution of silver, mercury, lead, copper and cadmium in central puget sound sediments. Marine Chemistry, 1987, 21, 377-390.	0.9	61
143	Combined use of electroanalytical methods to derive calibration plots for species difficult to standardize. Analytica Chimica Acta, 1986, 189, 253-262.	2.6	3
144	Cyclic voltammetric behaviour of some cationic η3-allyl complexes of Pd(II) and Pt(II) in comparison with hydride reduction. Inorganica Chimica Acta, 1986, 119, 19-24.	1.2	11

#	Article	IF	CITATIONS
145	The electrochemical reduction of the bis(acetylacetonato)nickel(II) complex in acetonitrile. Inorganica Chimica Acta, 1985, 99, 43-47.	1.2	8
146	Acid-base equilibria in organic solvents. Analytica Chimica Acta, 1985, 173, 141-148.	2.6	38
147	Acid-base equilibria in organic solvents. Analytica Chimica Acta, 1985, 173, 149-156.	2.6	7
148	19 Fâ^' nuclear magnetic relaxation by superoxide dismutase as an enzymic method for the detection of superoxide ion. FEBS Letters, 1981, 132, 78-80.	1.3	15