Michael Ittmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9480282/publications.pdf

Version: 2024-02-01

237 papers

26,086 citations

71 h-index

10986

154 g-index

241 all docs

241 docs citations

times ranked

241

30663 citing authors

#	Article	IF	CITATIONS
1	<i>PTEN</i> , a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer. Science, 1997, 275, 1943-1947.	12.6	4,506
2	The Molecular Taxonomy of Primary Prostate Cancer. Cell, 2015, 163, 1011-1025.	28.9	2,435
3	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	28.9	738
4	Widespread deregulation of microRNA expression in human prostate cancer. Oncogene, 2008, 27, 1788-1793.	5.9	607
5	Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nature Medicine, 2015, 21, 524-529.	30.7	588
6	An oncogene isolated by transfection of Kaposi's sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell, 1987, 50, 729-737.	28.9	542
7	Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5672-5677.	7.1	540
8	Prostate Pathology of Genetically Engineered Mice: Definitions and Classification. The Consensus Report from the Bar Harbor Meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Research, 2004, 64, 2270-2305.	0.9	530
9	Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell, 2017, 32, 474-489.e6.	16.8	483
10	A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations. Cancer Cell, 2017, 31, 820-832.e3.	16.8	433
11	Pathobiology of autochthonous prostate cancer in a preâ€clinical transgenic mouse model. Prostate, 2003, 55, 219-237.	2.3	402
12	Expression of Variant TMPRSS2/ERG Fusion Messenger RNAs Is Associated with Aggressive Prostate Cancer. Cancer Research, 2006, 66, 8347-8351.	0.9	360
13	Adult Murine Prostate Basal and Luminal Cells Are Self-Sustained Lineages that Can Both Serve as Targets for Prostate Cancer Initiation. Cancer Cell, 2012, 21, 253-265.	16.8	296
14	The role of fibroblast growth factors and their receptors in prostate cancer. Endocrine-Related Cancer, 2004, 11, 709-724.	3.1	295
15	Interleukin-6 Is an Autocrine Growth Factor in Human Prostate Cancer. American Journal of Pathology, 2001, 159, 2159-2165.	3.8	294
16	Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11563-11568.	7.1	291
17	Inducible FGFR-1 Activation Leads to Irreversible Prostate Adenocarcinoma and an Epithelial-to-Mesenchymal Transition. Cancer Cell, 2007, 12, 559-571.	16.8	259
18	Androgen receptor mutations in prostate cancer. Cancer Research, 2000, 60, 944-9.	0.9	255

#	Article	IF	CITATIONS
19	Cancer-Related Axonogenesis and Neurogenesis in Prostate Cancer. Clinical Cancer Research, 2008, 14, 7593-7603.	7.0	251
20	Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer. Clinical Cancer Research, 1999, 5, 1063-71.	7.0	236
21	Growth and Survival Mechanisms Associated with Perineural Invasion in Prostate Cancer. Cancer Research, 2004, 64, 6082-6090.	0.9	209
22	SRC-3 Is Required for Prostate Cancer Cell Proliferation and Survival. Cancer Research, 2005, 65, 7976-7983.	0.9	208
23	Animal Models of Human Prostate Cancer: The Consensus Report of the New York Meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Research, 2013, 73, 2718-2736.	0.9	203
24	Age-Related DNA Methylation Changes in Normal Human Prostate Tissues. Clinical Cancer Research, 2007, 13, 3796-3802.	7.0	192
25	Role of SRC-1 in the Promotion of Prostate Cancer Cell Growth and Tumor Progression. Cancer Research, 2005, 65, 7959-7967.	0.9	186
26	Comprehensive Genomic Characterization of Upper Tract Urothelial Carcinoma. European Urology, 2017, 72, 641-649.	1.9	170
27	Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9172-9177.	7.1	169
28	Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Research, 2001, 61, 3882-5.	0.9	165
29	Mutation of the androgen receptor causes oncogenic transformation of the prostate. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1151-1156.	7.1	164
30	Androgens Modulate Expression of Transcription Intermediary Factor 2, an Androgen Receptor Coactivator whose Expression Level Correlates with Early Biochemical Recurrence in Prostate Cancer. Cancer Research, 2006, 66, 10594-10602.	0.9	162
31	Prostatic inflammation enhances basal-to-luminal differentiation and accelerates initiation of prostate cancer with a basal cell origin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E592-600.	7.1	159
32	Pleiotropic Biological Activities of Alternatively Spliced TMPRSS2/ERG Fusion Gene Transcripts. Cancer Research, 2008, 68, 8516-8524.	0.9	156
33	SPOP Mutation Drives Prostate Tumorigenesis InÂVivo through Coordinate Regulation of PI3K/mTOR and AR Signaling. Cancer Cell, 2017, 31, 436-451.	16.8	152
34	The Fibroblast Growth Factor Receptor-4 Arg388 Allele Is Associated with Prostate Cancer Initiation and Progression. Clinical Cancer Research, 2004, 10, 6169-6178.	7.0	151
35	COUP-TFII inhibits TGF-Î ² -induced growth barrier to promote prostate tumorigenesis. Nature, 2013, 493, 236-240.	27.8	146
36	Paths of FGFR-driven tumorigenesis. Cell Cycle, 2009, 8, 580-588.	2.6	141

3

#	Article	IF	CITATIONS
37	Global Gene Expression Analysis of Reactive Stroma in Prostate Cancer. Clinical Cancer Research, 2009, 15, 3979-3989.	7.0	140
38	Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers. Nature Communications, 2018, 9, 4080.	12.8	138
39	Cellular senescence in the pathogenesis of benign prostatic hyperplasia. Prostate, 2003, 55, 30-38.	2.3	134
40	Hypoxic Adipocytes Pattern Early Heterotopic Bone Formation. American Journal of Pathology, 2007, 170, 620-632.	3.8	130
41	Decreased Expression and Androgen Regulation of the Tumor Suppressor Gene INPP4B in Prostate Cancer. Cancer Research, 2011, 71, 572-582.	0.9	126
42	Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Research, 2003, 63, 5754-60.	0.9	124
43	A Working Group Classification of Focal Prostate Atrophy Lesions. American Journal of Surgical Pathology, 2006, 30, 1281-1291.	3.7	123
44	Identification of Differentially Methylated Genes in Normal Prostate Tissues from African American and Caucasian Men. Clinical Cancer Research, 2010, 16, 3539-3547.	7.0	120
45	Interleukin-8 Is a Paracrine Inducer of Fibroblast Growth Factor 2, a Stromal and Epithelial Growth Factor in Benign Prostatic Hyperplasia. American Journal of Pathology, 2001, 159, 139-147.	3.8	117
46	The Expression of Sprouty1, an Inhibitor of Fibroblast Growth Factor Signal Transduction, Is Decreased in Human Prostate Cancer. Cancer Research, 2004, 64, 4728-4735.	0.9	114
47	GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18261-18266.	7.1	114
48	Steroid Receptor Coactivator-3/AIB1 Promotes Cell Migration and Invasiveness through Focal Adhesion Turnover and Matrix Metalloproteinase Expression. Cancer Research, 2008, 68, 5460-5468.	0.9	112
49	Common Structural and Epigenetic Changes in the Genome of Castration-Resistant Prostate Cancer. Cancer Research, 2012, 72, 616-625.	0.9	111
50	Mitochondrial pyruvate import is a metabolic vulnerability in androgen receptor-driven prostate cancer. Nature Metabolism, 2019, 1, 70-85.	11.9	110
51	Identification of Novel Tumor Markers in Prostate, Colon and Breast Cancer by Unbiased Methylation Profiling. PLoS ONE, 2008, 3, e2079.	2.5	110
52	FGFR1 Is Essential for Prostate Cancer Progression and Metastasis. Cancer Research, 2013, 73, 3716-3724.	0.9	107
53	Ampullary Cancers Harbor ELF3 Tumor Suppressor Gene Mutations and Exhibit Frequent WNT Dysregulation. Cell Reports, 2016, 14, 907-919.	6.4	107
54	Steroid Receptor Coactivator-3 and Activator Protein-1 Coordinately Regulate the Transcription of Components of the Insulin-Like Growth Factor/AKT Signaling Pathway. Cancer Research, 2006, 66, 11039-11046.	0.9	106

#	Article	IF	Citations
55	Relaxin Promotes Prostate Cancer Progression. Clinical Cancer Research, 2007, 13, 1695-1702.	7.0	101
56	INPP4B: the New Kid on the PI3K Block. Oncotarget, 2011, 2, 321-328.	1.8	97
57	Interleukin-8 expression is increased in senescent prostatic epithelial cells and promotes the development of benign prostatic hyperplasia. Prostate, 2004, 60, 153-159.	2.3	96
58	T Lymphocytes Redirected against the Chondroitin Sulfate Proteoglycan-4 Control the Growth of Multiple Solid Tumors both <i>In Vitro</i> and <i>In Vivo</i> Clinical Cancer Research, 2014, 20, 962-971.	7.0	95
59	Enhanced survival in perineural invasion of pancreatic cancer: an in vitro approach. Human Pathology, 2007, 38, 299-307.	2.0	94
60	SENP1 Induces Prostatic Intraepithelial Neoplasia through Multiple Mechanisms. Journal of Biological Chemistry, 2010, 285, 25859-25866.	3.4	92
61	Altered Fibroblast Growth Factor Receptor 4 Stability Promotes Prostate Cancer Progression. Neoplasia, 2008, 10, 847-856.	5. 3	88
62	SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein. Oncogene, 2017, 36, 4767-4777.	5.9	87
63	Allelic loss on chromosome 10 in prostate adenocarcinoma. Cancer Research, 1996, 56, 2143-7.	0.9	87
64	Alternative splicing of fibroblast growth factor receptors in human prostate cancer. Prostate, 2001, 46, 163-172.	2.3	86
65	Dysregulation of miRNAs-COUP-TFII-FOXM1-CENPF axis contributes to the metastasis of prostate cancer. Nature Communications, 2016, 7, 11418.	12.8	83
66	Stromal Antiapoptotic Paracrine Loop in Perineural Invasion of Prostatic Carcinoma. Cancer Research, 2006, 66, 5159-5164.	0.9	80
67	Non-Cell-Autonomous Regulation of Prostate Epithelial Homeostasis by Androgen Receptor. Molecular Cell, 2016, 63, 976-989.	9.7	80
68	Notch and $TGF\hat{l}^2$ Form a Reciprocal Positive Regulatory Loop that Suppresses Murine Prostate Basal Stem/Progenitor Cell Activity. Cell Stem Cell, 2012, 11, 676-688.	11.1	79
69	Inhibition of FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells with stem-cell properties. Oncogene, 2016, 35, 5963-5976.	5.9	78
70	Coactivator SRC-2–dependent metabolic reprogramming mediates prostate cancer survival and metastasis. Journal of Clinical Investigation, 2015, 125, 1174-1188.	8.2	78
71	Role of Fibroblast Growth Factor Receptor Signaling in Prostate Cancer Cell Survival. Journal of the National Cancer Institute, 2001, 93, 1783-1790.	6.3	74
72	Aberrant expression of Cks1 and Cks2 contributes to prostate tumorigenesis by promoting proliferation and inhibiting programmed cell death. International Journal of Cancer, 2008, 123, 543-551.	5.1	74

#	Article	IF	CITATIONS
73	Sprouty4, a suppressor of tumor cell motility, is downregulated by DNA methylation in human prostate cancer. Prostate, 2006, 66, 613-624.	2.3	73
74	Increased Notch signalling inhibits anoikis and stimulates proliferation of prostate luminal epithelial cells. Nature Communications, 2014, 5, 4416.	12.8	73
75	Overexpression of miR-145–5p Inhibits Proliferation of Prostate Cancer Cells and Reduces SOX2 Expression. Cancer Investigation, 2015, 33, 251-258.	1.3	73
76	FGF23 promotes prostate cancer progression. Oncotarget, 2015, 6, 17291-17301.	1.8	73
77	Activation of NF-κB by TMPRSS2/ERG Fusion Isoforms through Toll-Like Receptor-4. Cancer Research, 2011, 71, 1325-1333.	0.9	71
78	miR-1 and miR-133b Are Differentially Expressed in Patients with Recurrent Prostate Cancer. PLoS ONE, 2014, 9, e98675.	2.5	70
79	Endocrine Fibroblast Growth Factor FGF19 Promotes Prostate Cancer Progression. Cancer Research, 2013, 73, 2551-2562.	0.9	69
80	Oxidative stress promotes benign prostatic hyperplasia. Prostate, 2016, 76, 58-67.	2.3	69
81	Pan-Cancer Molecular Classes Transcending Tumor Lineage Across 32 Cancer Types, Multiple Data Platforms, and over 10,000 Cases. Clinical Cancer Research, 2018, 24, 2182-2193.	7.0	68
82	The prostate-specific G-protein coupled receptors PSGR and PSGR2 are prostate cancer biomarkers that are complementary to α-methylacyl-CoA racemase. Prostate, 2006, 66, 847-857.	2.3	67
83	Increased expression of fibroblast growth factor 6 in human prostatic intraepithelial neoplasia and prostate cancer. Cancer Research, 2000, 60, 4245-50.	0.9	67
84	FGF9 is an autocrine and paracrine prostatic growth factor expressed by prostatic stromal cells. , 1999, 180, 53-60.		66
85	Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer. Nature Communications, 2016, 7, 11612.	12.8	66
86	Conditional activation of fibroblast growth factor receptor (FGFR) 1, but not FGFR2, in prostate cancer cells leads to increased osteopontin induction, extracellular signal-regulated kinase activation, and in vivo proliferation. Cancer Research, 2003, 63, 6237-43.	0.9	66
87	Interleukin- $\hat{\Pi}$ ± Is a Paracrine Inducer of FGF7, a Key Epithelial Growth Factor in Benign Prostatic Hyperplasia. American Journal of Pathology, 2000, 157, 249-255.	3.8	65
88	Increased Expression and Activity of CDC25C Phosphatase and an Alternatively Spliced Variant in Prostate Cancer. Clinical Cancer Research, 2005, 11, 4701-4706.	7.0	64
89	Genome-wide differentially methylated genes in prostate cancer tissues from African-American and Caucasian men. Epigenetics, 2015, 10, 319-328.	2.7	64
90	Inducible prostate intraepithelial neoplasia with reversible hyperplasia in conditional FGFR1-expressing mice. Cancer Research, 2003, 63, 8256-63.	0.9	64

#	Article	IF	Citations
91	Common mutations in BRCA1 and BRCA2 do not contribute to early prostate cancer in Jewish men. Prostate, 1999, 40, 172-177.	2.3	63
92	PSGR2, a novel G-protein coupled receptor, is overexpressed in human prostate cancer. International Journal of Cancer, 2006, 118, 1471-1480.	5.1	63
93	Suppression of relaxin receptor RXFP1 decreases prostate cancer growth and metastasis. Endocrine-Related Cancer, 2010, 17, 1021-1033.	3.1	63
94	MNX1 Is Oncogenically Upregulated in African-American Prostate Cancer. Cancer Research, 2016, 76, 6290-6298.	0.9	61
95	Identification of novel DNA-methylated genes that correlate with human prostate cancer and high-grade prostatic intraepithelial neoplasia. Prostate Cancer and Prostatic Diseases, 2013, 16, 292-300.	3.9	60
96	Chromatin Regulator CHD1 Remodels the Immunosuppressive Tumor Microenvironment in PTEN-Deficient Prostate Cancer. Cancer Discovery, 2020, 10, 1374-1387.	9.4	60
97	Notch promotes tumor metastasis in a prostate-specific Pten-null mouse model. Journal of Clinical Investigation, 2016, 126, 2626-2641.	8.2	60
98	Impact of Preimmunization on Adenoviral Vector Expression and Toxicity in a Subcutaneous Mouse Cancer Model. Molecular Therapy, 2002, 6, 342-348.	8.2	59
99	RTVP-1, a Tumor Suppressor Inactivated by Methylation in Prostate Cancer. Cancer Research, 2004, 64, 969-976.	0.9	59
100	Increased expression of prostate-specific G-protein-coupled receptor in human prostate intraepithelial neoplasia and prostate cancers. International Journal of Cancer, 2005, 113, 811-818.	5.1	58
101	Functional annotation of rare gene aberration drivers of pancreatic cancer. Nature Communications, 2016, 7, 10500.	12.8	58
102	Positive association of collagen type I with non-muscle invasive bladder cancer progression. Oncotarget, 2016, 7, 82609-82619.	1.8	58
103	Mitochondrial DNA G10398A Polymorphism and Invasive Breast Cancer in African-American Women. Cancer Research, 2006, 66, 1880-1881.	0.9	57
104	Determining Prostate Cancer-Specific Death through Quantification of Stromogenic Carcinoma Area in Prostatectomy Specimens. American Journal of Pathology, 2011, 178, 79-87.	3.8	56
105	TRAF4-mediated ubiquitination of NGF receptor TrkA regulates prostate cancer metastasis. Journal of Clinical Investigation, 2018, 128, 3129-3143.	8.2	55
106	Highly Specific Targeting of the TMPRSS2/ERG Fusion Gene Using Liposomal Nanovectors. Clinical Cancer Research, 2012, 18, 6648-6657.	7.0	53
107	Development and Clinical Validation of a Real-Time PCR Assay for PITX2 DNA Methylation to Predict Prostate-Specific Antigen Recurrence in Prostate Cancer Patients Following Radical Prostatectomy. Journal of Molecular Diagnostics, 2013, 15, 270-279.	2.8	53
108	Function of phosphorylation of NF-kB p65 ser536 in prostate cancer oncogenesis. Oncotarget, 2015, 6, 6281-6294.	1.8	53

#	Article	IF	Citations
109	CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nature Communications, 2016, 7, 13362.	12.8	53
110	Molecular cloning of a gene that is necessary for G1 progression in mammalian cells Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 1565-1569.	7.1	52
111	MicroRNA expression profiling reveals the potential function of microRNA-31 in chordomas. Journal of Neuro-Oncology, 2013, 115, 143-151.	2.9	51
112	Mismatch repair gene expression and genetic instability in testicular germ cell tumor. Cancer Biology and Therapy, 2004, 3, 977-982.	3.4	50
113	The function of microRNAs, small but potent molecules, in human prostate cancer. Prostate Cancer and Prostatic Diseases, 2010, 13, 208-217.	3.9	49
114	Pan-urologic cancer genomic subtypes that transcend tissue of origin. Nature Communications, 2017, 8, 199.	12.8	49
115	Influence of the neural microenvironment on prostate cancer. Prostate, 2018, 78, 128-139.	2.3	49
116	Anatomy and Histology of the Human and Murine Prostate. Cold Spring Harbor Perspectives in Medicine, 2018, 8, a030346.	6.2	47
117	Endothelin-1 production and agonist activities in cultured prostate-derived cells: Implications for regulation of endothelin bioactivity and bioavailability in prostatic hyperplasia., 1998, 34, 241-250.		46
118	Differential expression of stem cell markers and ABCG2 in recurrent prostate cancer. Prostate, 2014, 74, 1498-1505.	2.3	46
119	Spatially Restricted Stromal Wnt Signaling Restrains Prostate Epithelial Progenitor Growth through Direct and Indirect Mechanisms. Cell Stem Cell, 2019, 24, 753-768.e6.	11.1	46
120	Elevated caveolin-1 levels in African-American versus white-American prostate cancer. Clinical Cancer Research, 2000, 6, 3430-3.	7.0	46
121	Antiproliferative Effects and Mechanisms of Liver X Receptor Ligands in Pancreatic Ductal Adenocarcinoma Cells. PLoS ONE, 2014, 9, e106289.	2.5	45
122	Cooperation between ectopic FGFR1 and depression of FGFR2 in induction of prostatic intraepithelial neoplasia in the mouse prostate. Cancer Research, 2003, 63, 8784-90.	0.9	45
123	Targeting Fibroblast Growth Factor Receptor Signaling Inhibits Prostate Cancer Progression. Clinical Cancer Research, 2012, 18, 3880-3888.	7.0	44
124	Recruitment of CD34+ Fibroblasts in Tumor-Associated Reactive Stroma. American Journal of Pathology, 2014, 184, 1860-1870.	3.8	43
125	Identification of microRNAs differentially expressed in prostatic secretions of patients with prostate cancer. International Journal of Cancer, 2015, 136, 875-879.	5.1	42
126	RET Signaling in Prostate Cancer. Clinical Cancer Research, 2017, 23, 4885-4896.	7.0	42

#	Article	IF	CITATIONS
127	Alterations in the p53 and MDM-2 genes are infrequent in clinically localized, stage B prostate adenocarcinomas. American Journal of Pathology, 1994, 145, 287-93.	3.8	42
128	<i>>FGFR-4</i> Arg388 Enhances Prostate Cancer Progression via Extracellular Signal–Related Kinase and Serum Response Factor Signaling. Clinical Cancer Research, 2011, 17, 4355-4366.	7.0	40
129	Semaphorin 4F as a Critical Regulator of Neuroepithelial Interactions and a Biomarker of Aggressive Prostate Cancer. Clinical Cancer Research, 2013, 19, 6101-6111.	7.0	40
130	Role of miR-145 in human laryngeal squamous cell carcinoma. Head and Neck, 2016, 38, 260-266.	2.0	40
131	GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells. Oncotarget, 2016, 7, 45171-45185.	1.8	40
132	Chronic activity of ectopic type 1 fibroblast growth factor receptor tyrosine kinase in prostate epithelium results in hyperplasia accompanied by intraepithelial neoplasia. Prostate, 2004, 58, 1-12.	2.3	39
133	Genomic Profiling of Prostate Cancers from African American Men. Neoplasia, 2009, 11, 305-312.	5. 3	39
134	Stromal TGF- \hat{l}^2 signaling induces AR activation in prostate cancer. Oncotarget, 2014, 5, 10854-10869.	1.8	39
135	Bystin in perineural invasion of prostate cancer. Prostate, 2006, 66, 266-272.	2.3	38
136	Inhibition of CAMKK2 impairs autophagy and castration-resistant prostate cancer via suppression of AMPK-ULK1 signaling. Oncogene, 2021, 40, 1690-1705.	5.9	38
137	GGAP2/PIKE-A Directly Activates Both the Akt and Nuclear Factor-ÎB Pathways and Promotes Prostate Cancer Progression. Cancer Research, 2009, 69, 819-827.	0.9	36
138	SULT2B1b Sulfotransferase: Induction by Vitamin D Receptor and Reduced Expression in Prostate Cancer. Molecular Endocrinology, 2013, 27, 925-939.	3.7	36
139	TGF-Î ² 1 Induces an Age-Dependent Inflammation of Nerve Ganglia and Fibroplasia in the Prostate Gland Stroma of a Novel Transgenic Mouse. PLoS ONE, 2010, 5, e13751.	2.5	36
140	The Senescence-Associated Secretory Phenotype Promotes Benign Prostatic Hyperplasia. American Journal of Pathology, 2014, 184, 721-731.	3.8	34
141	FGFR1–WNT–TGF-β Signaling in Prostate Cancer Mouse Models Recapitulates Human Reactive Stroma. Cancer Research, 2014, 74, 609-620.	0.9	34
142	Cells Comprising the Prostate Cancer Microenvironment Lack Recurrent Clonal Somatic Genomic Aberrations. Molecular Cancer Research, 2016, 14, 374-384.	3.4	34
143	Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene, 2017, 36, 618-627.	5.9	34
144	miR-33a is a tumor suppressor microRNA that is decreased in prostate cancer. Oncotarget, 2017, 8, 60243-60256.	1.8	34

#	Article	IF	CITATIONS
145	The role of miR-145 in stem cell characteristics of human laryngeal squamous cell carcinoma Hep-2 cells. Tumor Biology, 2016, 37, 4183-4192.	1.8	33
146	Glioma pathogenesisâ€related protein 1 induces prostate cancer cell death through Hsc70â€mediated suppression of AURKA and TPX2. Molecular Oncology, 2013, 7, 484-496.	4.6	32
147	The Steroid Receptor Coactivator-3 Is Required for the Development of Castration-Resistant Prostate Cancer. Cancer Research, 2013, 73, 3997-4008.	0.9	32
148	GLIPR1 Suppresses Prostate Cancer Development through Targeted Oncoprotein Destruction. Cancer Research, 2011, 71, 7694-7704.	0.9	31
149	GLIPR1 Tumor Suppressor Gene Expressed by Adenoviral Vector as Neoadjuvant Intraprostatic Injection for Localized Intermediate or High-Risk Prostate Cancer Preceding Radical Prostatectomy. Clinical Cancer Research, 2011, 17, 7174-7182.	7. O	31
150	ERK and AKT Signaling Drive MED1 Overexpression in Prostate Cancer in Association with Elevated Proliferation and Tumorigenicity. Molecular Cancer Research, 2013, 11, 736-747.	3.4	31
151	Genes Upregulated in Prostate Cancer Reactive Stroma Promote Prostate Cancer Progression <i>In Vivo</i> . Clinical Cancer Research, 2014, 20, 100-109.	7.0	31
152	Bortezomib-Mediated Inhibition of Steroid Receptor Coactivator-3 Degradation Leads to Activated Akt. Clinical Cancer Research, 2008, 14, 7511-7518.	7.0	30
153	Loss of heterozygosity on chromosomes 10 and 17 in clinically localized prostate carcinoma. , 1996, 28, 275-281.		29
154	The role of ATPâ€binding cassette transporter genes in the progression of prostate cancer. Prostate, 2016, 76, 434-444.	2.3	29
155	Expression of ERG protein in prostate cancer: variability and biological correlates. Endocrine-Related Cancer, 2015, 22, 277-287.	3.1	28
156	RGS12 Is a Novel Tumor-Suppressor Gene in African American Prostate Cancer That Represses AKT and MNX1 Expression. Cancer Research, 2017, 77, 4247-4257.	0.9	28
157	Preventive Efficacy of a Tenofovir Alafenamide Fumarate Nanofluidic Implant in SHIVâ€Challenged Nonhuman Primates. Advanced Therapeutics, 2021, 4, 2000163.	3.2	28
158	Neuronal Transâ€Differentiation in Prostate Cancer Cells. Prostate, 2016, 76, 1312-1325.	2.3	27
159	FGF17 is an autocrine prostatic epithelial growth factor and is upregulated in benign prostatic hyperplasia. Prostate, 2004, 60, 18-24.	2.3	26
160	Inhibition of proliferation and survival of melanoma cells by adenoviral-mediated expression of dominant negative fibroblast growth factor receptor. Melanoma Research, 2004, 14, 13-21.	1,2	26
161	Increased expression of the metastasis-associated gene Ehm2 in prostate cancer. Prostate, 2006, 66, 1641-1652.	2.3	26
162	CDC4 gene expression as potential biomarker for targeted therapy in prostate cancer. Cancer Biology and Therapy, 2006, 5, 78-83.	3.4	26

#	Article	IF	CITATIONS
163	The Germ Cell Gene TDRD1 as an ERG Target Gene and a Novel Prostate Cancer Biomarker. Prostate, 2016, 76, 1271-1284.	2.3	26
164	MicroRNAs as prognostic markers in prostate cancer. Prostate, 2019, 79, 265-271.	2.3	25
165	Nuclear Receptor Corepressor 1 Expression and Output Declines with Prostate Cancer Progression. Clinical Cancer Research, 2016, 22, 3937-3949.	7.0	24
166	ERR1- and PGC1α-associated mitochondrial alterations correlate with pan-cancer disparity in African Americans. Journal of Clinical Investigation, 2019, 129, 2351-2356.	8.2	24
167	The tumor suppressive miR-200b subfamily is an ERG target gene in human prostate tumors. Oncotarget, 2016, 7, 37993-38003.	1.8	24
168	Organization and Expression of the Cell Cycle Gene, <i>ts11</i> , That Encodes Asparagine Synthetase. Molecular and Cellular Biology, 1989, 9, 2350-2359.	2.3	24
169	Relaxin/RXFP1 Signaling in Prostate Cancer Progression. Annals of the New York Academy of Sciences, 2009, 1160, 379-380.	3.8	22
170	Role of TMPRSS2-ERG Gene Fusion in Negative Regulation of PSMA Expression. PLoS ONE, 2011, 6, e21319.	2.5	22
171	Associations between arachidonic acid metabolism gene polymorphisms and prostate cancer risk. Prostate, 2011, 71, 1382-1389.	2.3	22
172	Gene expression profiling and analysis of signaling pathways involved in priming and differentiation of human neural stem cells. Neuroscience, 2006, 138, 133-148.	2.3	21
173	Transcriptional and post-transcriptional regulation of Sprouty1, a receptor tyrosine kinase inhibitor in prostate cancer. Prostate Cancer and Prostatic Diseases, 2011, 14, 279-285.	3.9	21
174	HLA-restricted NY-ESO-1 peptide immunotherapy for metastatic castration resistant prostate cancer. Investigational New Drugs, 2014, 32, 235-242.	2.6	21
175	Methionine-Homocysteine Pathway in African-American Prostate Cancer. JNCI Cancer Spectrum, 2019, 3, pkz019.	2.9	21
176	Combination treatment of prostate cancer with FGF receptor and AKT kinase inhibitors. Oncotarget, 2017, 8, 6179-6192.	1.8	21
177	ERManl Is a Target of miR-125b and Promotes Transformation Phenotypes in Hepatocellular Carcinoma (HCC). PLoS ONE, 2013, 8, e72829.	2.5	20
178	JNK1/2 represses Lkb1-deficiency-induced lung squamous cell carcinoma progression. Nature Communications, 2019, 10, 2148.	12.8	20
179	Isolation of the Human Gene that Complements a Temperature-Sensitive Cell Cycle Mutation in BHK Cells. Molecular and Cellular Biology, 1987, 7, 3386-3393.	2.3	20
180	DNA methylation and aberrant expression of Sprouty1 in human prostate cancer. Epigenetics, 2009, 4, 54-61.	2.7	19

#	Article	IF	Citations
181	Dicer Ablation Impairs Prostate Stem Cell Activity and Causes Prostate Atrophy. Stem Cells, 2010, 28, 1260-1269.	3.2	19
182	Targeting the TMPRSS2/ERG fusion mRNA using liposomal nanovectors enhances docetaxel treatment in prostate cancer. Prostate, 2020, 80, 65-73.	2.3	19
183	FGF-10 Is expressed at low levels in the human prostate. Prostate, 2000, 44, 334-338.	2.3	18
184	IRIS iQ200 workstation as a screen for performing urine culture. Diagnostic Microbiology and Infectious Disease, 2013, 75, 5-8.	1.8	18
185	Identification of microRNA profile specific to cancer stem-like cells directly isolated from human larynx cancer specimens. BMC Cancer, 2016, 16, 853.	2.6	18
186	CD8 infiltration is associated with disease control and tobacco exposure in intermediate-risk oropharyngeal cancer. Scientific Reports, 2020, 10, 243.	3.3	18
187	Transthyretin lle 122 and cardiac amyloidosis in African-Americans. 2 case reports. Texas Heart Institute Journal, 1997, 24, 45-52.	0.3	18
188	The essential role of GATA transcription factors in adult murine prostate. Oncotarget, 2016, 7, 47891-47903.	1.8	17
189	Racial disparities in prostate cancer: A complex interplay between socioeconomic inequities and genomics. Cancer Letters, 2022, 531, 71-82.	7.2	17
190	Mitogenic activation of human prostate-derived fibromuscular stromal cells by bradykinin. British Journal of Pharmacology, 1999, 127, 220-226.	5.4	16
191	Gene fusion characterisation of rare aggressive prostate cancer variants—adenosquamous carcinoma, pleomorphic giantâ€cell carcinoma, and sarcomatoid carcinoma: an analysis of 19 cases. Histopathology, 2020, 77, 890-899.	2.9	15
192	Activation of Wnt Signaling by Chemically Induced Dimerization of LRP5 Disrupts Cellular Homeostasis. PLoS ONE, 2012, 7, e30814.	2.5	15
193	CKB inhibits epithelial-mesenchymal transition and prostate cancer progression by sequestering and inhibiting AKT activation. Neoplasia, 2021, 23, 1147-1165.	5.3	15
194	Chromosomal localization of human genes required for G1 progression in mammalian cells. Genomics, 1989, 4, 240-245.	2.9	14
195	Protection of mice against tumor growth by immunization with an oncogene-encoded growth factor Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4222-4225.	7.1	14
196	Artificial Neural Network Analysis of DNA Microarray-based Prostate Cancer Recurrence., 2005,,.		14
197	Oxygen Tension Directs Chondrogenic Differentiation of Myelo-Monocytic Progenitors During Endochondral Bone Formation. Tissue Engineering, 2007, 13, 2011-2019.	4.6	14
198	Moving Beyond Gleason Scoring. Archives of Pathology and Laboratory Medicine, 2019, 143, 565-570.	2.5	14

#	Article	IF	Citations
199	Comparison of the growth-promoting effects of testosterone and 7-î±-methyl-19-nor-testosterone (MENT) on the prostate and levator ani muscle of LPB-tag transgenic mice. Prostate, 2006, 66, 369-376.	2.3	13
200	A Polymorphism in the FGFR4 Gene Is Associated With Risk of Neuroblastoma and Altered Receptor Degradation. Journal of Pediatric Hematology/Oncology, 2016, 38, 131-138.	0.6	13
201	Neuroblastoma patient outcomes, tumor differentiation, and ERK activation are correlated with expression levels of the ubiquitin ligase UBE4B. Genes and Cancer, 2016, 7, 13-26.	1.9	13
202	The BN51 protein is a polymerase (Pol)-specific subunit of RNA Pol III which reveals a link between Pol III transcription and pre-rRNA processing. Molecular and Cellular Biology, 1995, 15, 94-101.	2.3	12
203	Association of Genetic Ancestry With DNA Methylation Changes in Prostate Cancer Disparity. Anticancer Research, 2019, 39, 5861-5866.	1.1	12
204	RNF144A deficiency promotes PD-L1 protein stabilization and carcinogen-induced bladder tumorigenesis. Cancer Letters, 2021, 520, 344-360.	7.2	12
205	Variable frequency of polyomavirus SV40 and herpesvirus EBV in lymphomas from two different urban population groups in Houston, TX. Journal of Clinical Virology, 2009, 46, 154-160.	3.1	11
206	ING5 inhibits cancer aggressiveness by inhibiting Akt and activating p53 in prostate cancer. Cell Biology International, 2020, 44, 242-252.	3.0	11
207	CASC11 promotes aggressiveness of prostate cancer cells through miR-145/IGF1R axis. Prostate Cancer and Prostatic Diseases, 2021, 24, 891-902.	3.9	11
208	A Versatile Tumor Gene Deletion System Reveals a Crucial Role for FGFR1 in Breast Cancer Metastasis. Neoplasia, 2017, 19, 421-428.	5.3	10
209	Impact of diet on irinotecan toxicity in mice. Chemico-Biological Interactions, 2018, 291, 87-94.	4.0	10
210	INPP4B protects from metabolicÂsyndrome and associated disorders. Communications Biology, 2021, 4, 416.	4.4	10
211	AZD4547 targets the FGFR/Akt/SOX2 axis to overcome paclitaxel resistance in head and neck cancer. Cellular Oncology (Dordrecht), 2022, 45, 41-56.	4.4	10
212	GlutathioneS-transferase pi is upregulated in the stromal compartment of hormone independent prostate cancer. Prostate, 2003, 56, 98-105.	2.3	9
213	In vivo preservation of steroid specificity in CWR22 xenografts having a mutated androgen receptor. Prostate, 2003, 57, 1-7.	2.3	9
214	Aberrant Activation of the RANK Signaling Receptor Induces Murine Salivary Gland Tumors. PLoS ONE, 2015, 10, e0128467.	2.5	9
215	Kallikrein gene family as biomarkers for recurrent prostate cancer. Croatian Medical Journal, 2020, 61, 450-456.	0.7	8
216	Interaction of the Androgen Receptor, ETV1, and PTEN Pathways in Mouse Prostate Varies with Pathological Stage and Predicts Cancer Progression. Hormones and Cancer, 2015, 6, 67-86.	4.9	7

#	Article	IF	Citations
217	DNA methylation patterns in bladder tumors of African American patients point to distinct alterations in xenobiotic metabolism. Carcinogenesis, 2019, 40, 1332-1340.	2.8	7
218	Frequent Heterogeneous Missense Mutations of GGAP2 in Prostate Cancer: Implications for Tumor Biology, Clonality and Mutation Analysis. PLoS ONE, 2012, 7, e32708.	2.5	6
219	Comparative analysis of p16 expression among African American and European American prostate cancer patients. Prostate, 2019, 79, 1274-1283.	2.3	6
220	Innovations in risk-stratification and treatment of Veterans with oropharynx cancer; roadmap of the 2019 Field Based Meeting. Oral Oncology, 2020, 102, 104440.	1.5	6
221	Systemic Ablation of Camkk2 Impairs Metastatic Colonization and Improves Insulin Sensitivity in TRAMP Mice: Evidence for Cancer Cell-Extrinsic CAMKK2 Functions in Prostate Cancer. Cells, 2022, 11, 1890.	4.1	6
222	MEX3D is an oncogenic driver in prostate cancer. Prostate, 2021, 81, 1202-1213.	2.3	5
223	Fibroblast growth factor receptor signaling plays a key role in transformation induced by the TMPRSS2/ERG fusion gene and decreased PTEN. Oncotarget, 2018, 9, 14456-14471.	1.8	5
224	Expression of pattern recognition receptor genes and mortality in patients with colorectal adenocarcinoma. International Journal of Molecular Epidemiology and Genetics, 2017, 8, 8-18.	0.4	5
225	Cellular interactions of the phosphorylated form of AKT in prostate cancer. Human Pathology, 2017, 63, 98-109.	2.0	4
226	Repair-Assisted Damage Detection Reveals Biological Disparities in Prostate Cancer between African Americans and European Americans. Cancers, 2022, 14, 1012.	3.7	4
227	Lipid Alterations in African American Men with Prostate Cancer. Metabolites, 2022, 12, 8.	2.9	4
228	Differential Expression of Tight Junctions and Cell Polarity Genes in Human Colon Cancer. Exploratory Research and Hypothesis in Medicine, 2018, 3, 14-19.	0.4	3
229	A Versatile Gene Delivery System for Efficient and Tumor Specific Gene Manipulation in vivo. Discoveries, 2016, 4, e58.	2.3	3
230	Expression of Endogenous Retroviral RNA in Prostate Tumors has Prognostic Value and Shows Differences among Americans of African Versus European/Middle Eastern Ancestry. Cancers, 2021, 13, 6347.	3.7	3
231	Short-term RANKL exposure initiates a neoplastic transcriptional program in the basal epithelium of the murine salivary gland. Cytokine, 2019, 123, 154745.	3.2	2
232	Combined Perifosine (PI3K/AKT Inhibitor) and Radiotherapy for Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 72, S712-S713.	0.8	0
233	Duffy Antigen/Receptor for Chemokines (DARC): Is There a Role in Prostate Cancer? Blood, 2005, 106, 4394-4394.	1.4	0
234	PSGR2, a novel Gâ€protein coupled receptor, is overexpressed in human prostate cancer. FASEB Journal, 2006, 20, A936.	0.5	0

#	Article	IF	CITATIONS
235	Gene Expression Analysis. Molecular Pathology Library, 2018, , 153-167.	0.1	O
236	SAT-326 INPP4B Suppresses Prostate Inflammation And Protects Mice Fed With High-fat Diet From The Development Of Prostate Intraepithelial Neoplasia. Journal of the Endocrine Society, 2019, 3, .	0.2	0
237	Role of African American genetic polymorphisms in prostate cancer. Journal of Clinical Oncology, 2004, 22, 4710-4710.	1.6	0