Elisa Avolio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9480159/publications.pdf

Version: 2024-02-01

623734 395702 1,514 34 14 33 h-index citations g-index papers 37 37 37 2188 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transplantation of Human Pericyte Progenitor Cells Improves the Repair of Infarcted Heart Through Activation of an Angiogenic Program Involving Micro-RNA-132. Circulation Research, 2011, 109, 894-906.	4.5	332
2	Intravenous Gene Therapy With PIM-1 Via a Cardiotropic Viral Vector Halts the Progression of Diabetic Cardiomyopathy Through Promotion of Prosurvival Signaling. Circulation Research, 2011, 108, 1238-1251.	4.5	137
3	Global Remodeling of the Vascular Stem Cell Niche in Bone Marrow of Diabetic Patients. Circulation Research, 2013, 112, 510-522.	4.5	135
4	Combined Intramyocardial Delivery of Human Pericytes and Cardiac Stem Cells Additively Improves the Healing of Mouse Infarcted Hearts Through Stimulation of Vascular and Muscular Repair. Circulation Research, 2015, 116, e81-94.	4.5	116
5	The SARS-CoV-2 Spike protein disrupts human cardiac pericytes function through CD147 receptor-mediated signalling: a potential non-infective mechanism of COVID-19 microvascular disease. Clinical Science, 2021, 135, 2667-2689.	4.3	97
6	Role for Substance P–Based Nociceptive Signaling in Progenitor Cell Activation and Angiogenesis During Ischemia in Mice and in Human Subjects. Circulation, 2012, 125, 1774-1786.	1.6	90
7	Expansion and Characterization of Neonatal Cardiac Pericytes Provides a Novel Cellular Option for Tissue Engineering in Congenital Heart Disease. Journal of the American Heart Association, 2015, 4, e002043.	3.7	64
8	Perivascular cells and tissue engineering: Current applications and untapped potential., 2017, 171, 83-92.		62
9	Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes. Cardiovascular Research, 2013, 97, 55-65.	3.8	57
10	Ex Vivo Molecular Rejuvenation Improves the Therapeutic Activity of Senescent Human Cardiac Stem Cells in a Mouse Model of Myocardial Infarction. Stem Cells, 2014, 32, 2373-2385.	3.2	57
11	Discovering cardiac pericyte biology: From physiopathological mechanisms to potential therapeutic applications in ischemic heart disease. Vascular Pharmacology, 2016, 86, 53-63.	2.1	49
12	Epigenetic Profile of Human Adventitial Progenitor Cells Correlates With Therapeutic Outcomes in a Mouse Model of Limb Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 675-688.	2.4	38
13	Transplantation of Allogeneic Pericytes Improves Myocardial Vascularization and Reduces Interstitial Fibrosis in a Swine Model of Reperfused Acute Myocardial Infarction. Journal of the American Heart Association, 2018, 7, .	3.7	38
14	Stem cell therapy and tissue engineering for correction of congenital heart disease. Frontiers in Cell and Developmental Biology, 2015, 3, 39.	3.7	35
15	Transfer of a human gene variant associated with exceptional longevity improves cardiac function in obese type 2 diabetic mice through induction of the SDF â€1/ CXCR4 signalling pathway. European Journal of Heart Failure, 2020, 22, 1568-1581.	7.1	25
16	Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart. Journal of Clinical Investigation, 2022, 132, .	8.2	18
17	Heart failure impairs the mechanotransduction properties of human cardiac pericytes. Journal of Molecular and Cellular Cardiology, 2021, 151, 15-30.	1.9	17
18	The adipokine leptin modulates adventitial pericyte functions by autocrine and paracrine signalling. Scientific Reports, 2017, 7, 5443.	3.3	15

#	Article	IF	CITATIONS
19	Role of TPBG (Trophoblast Glycoprotein) Antigen in Human Pericyte Migratory and Angiogenic Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1113-1124.	2.4	15
20	Cardiac Nerve Growth Factor Overexpression Induces Bone Marrow–derived Progenitor Cells Mobilization and Homing to the Infarcted Heart. Molecular Therapy, 2015, 23, 1854-1866.	8.2	14
21	In Vitro and In Vivo Preclinical Testing of Pericyteâ€Engineered Grafts for the Correction of Congenital Heart Defects. Journal of the American Heart Association, 2020, 9, e014214.	3.7	14
22	Nerve growth factor gene therapy improves bone marrow sensory innervation and nociceptor-mediated stem cell release in a mouse model of type 1 diabetes with limb ischaemia. Diabetologia, 2019, 62, 1297-1311.	6.3	13
23	Migration towards SDF-1 selects angiogenin-expressing bone marrow monocytes endowed with cardiac reparative activity in patients with previous myocardial infarction. Stem Cell Research and Therapy, 2015, 6, 53.	5.5	12
24	Multi-Omics Analysis of Diabetic Heart Disease in the db/db Model Reveals Potential Targets for Treatment by a Longevity-Associated Gene. Cells, 2020, 9, 1283.	4.1	11
25	Secreted Protein Acidic and Cysteine Rich Matricellular Protein is Enriched in the Bioactive Fraction of the Human Vascular Pericyte Secretome. Antioxidants and Redox Signaling, 2021, 34, 1151-1164.	5.4	11
26	Fabrication of New Hybrid Scaffolds for in vivo Perivascular Application to Treat Limb Ischemia. Frontiers in Cardiovascular Medicine, 2020, 7, 598890.	2.4	9
27	Human adventitial pericytes provide a unique source of anti-calcific cells for cardiac valve engineering: Role of microRNA-132-3p. Free Radical Biology and Medicine, 2021, 165, 137-151.	2.9	7
28	The Effect of Matrix Stiffness of Biomimetic Gelatin Nanofibrous Scaffolds on Human Cardiac Pericyte Behavior. ACS Applied Bio Materials, 2019, 2, 4385-4396.	4.6	5
29	Reconstruction of the Swine Pulmonary Artery Using a Graft Engineered With Syngeneic Cardiac Pericytes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 715717.	4.1	5
30	Personalized Cardiovascular Regenerative Medicine: Targeting the Extreme Stages of Life. Frontiers in Cardiovascular Medicine, 2019, 6, 177.	2.4	4
31	Umbilical Cord Pericytes Provide a Viable Alternative to Mesenchymal Stem Cells for Neonatal Vascular Engineering. Frontiers in Cardiovascular Medicine, 2020, 7, 609980.	2.4	3
32	Training Monocytes by Physical Exercise. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1733-1735.	2.4	2
33	Treatment of COVID-19 by stage: any space left for mesenchymal stem cell therapy?. Regenerative Medicine, 2021, 16, 477-494.	1.7	2
34	Combined Intramyocardial Delivery of Human Pericytes and Cardiac Stem Cells Additively Improves the Healing of Mouse Infarcted Hearts Through Stimulation of Vascular and Muscular Repair. Circulation Research, 2015, 116, .	4.5	1