
A David Edwards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9480088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Moderate Hypothermia to Treat Perinatal Asphyxial Encephalopathy. New England Journal of Medicine, 2009, 361, 1349-1358.	13.9	1,471
2	Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ: British Medical Journal, 2010, 340, c363-c363.	2.4	765
3	Effects of Hypothermia for Perinatal Asphyxia on Childhood Outcomes. New England Journal of Medicine, 2014, 371, 140-149.	13.9	567
4	Diffusion-Weighted Imaging of the Brain in Preterm Infants With Focal and Diffuse White Matter Abnormality. Pediatrics, 2003, 112, 1-7.	1.0	474
5	Emergence of resting state networks in the preterm human brain. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20015-20020.	3.3	461
6	Natural History of Brain Lesions in Extremely Preterm Infants Studied With Serial Magnetic Resonance Imaging From Birth and Neurodevelopmental Assessment. Pediatrics, 2006, 118, 536-548.	1.0	430
7	Assessment of Neonatal Encephalopathy by Amplitude-integrated Electroencephalography. Pediatrics, 1999, 103, 1263-1271.	1.0	405
8	Abnormal Magnetic Resonance Signal in the Internal Capsule Predicts Poor Neurodevelopmental Outcome in Infants With Hypoxic-Ischemic Encephalopathy. Pediatrics, 1998, 102, 323-328.	1.0	360
9	Abnormal Cortical Development after Premature Birth Shown by Altered Allometric Scaling of Brain Growth. PLoS Medicine, 2006, 3, e265.	3.9	348
10	Comparison of Findings on Cranial Ultrasound and Magnetic Resonance Imaging in Preterm Infants. Pediatrics, 2001, 107, 719-727.	1.0	343
11	Magnetic resonance imaging of the brain in a cohort of extremely preterm infants. Journal of Pediatrics, 1999, 135, 351-357.	0.9	317
12	The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neurolmage, 2018, 173, 88-112.	2.1	315
13	Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. NeuroImage, 2008, 40, 672-684.	2.1	301
14	Rich-club organization of the newborn human brain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7456-7461.	3.3	300
15	Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain. IEEE Transactions on Medical Imaging, 2014, 33, 1818-1831.	5.4	296
16	Development of cortical microstructure in the preterm human brain. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9541-9546.	3.3	293
17	Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants. NeuroImage, 2007, 35, 1021-1027.	2.1	287
18	Reduced development of cerebral cortex in extremely preterm infants. Lancet, The, 2000, 356, 1162-1163.	6.3	274

#	Article	IF	CITATIONS
19	The Effect of Preterm Birth on Thalamic and Cortical Development. Cerebral Cortex, 2012, 22, 1016-1024.	1.6	262
20	Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression. NeuroImage, 2012, 59, 2255-2265.	2.1	259
21	Specific relations between neurodevelopmental abilities and white matter microstructure in children born preterm. Brain, 2008, 131, 3201-3208.	3.7	249
22	A dynamic 4D probabilistic atlas of the developing brain. NeuroImage, 2011, 54, 2750-2763.	2.1	247
23	A dedicated neonatal brain imaging system. Magnetic Resonance in Medicine, 2017, 78, 794-804.	1.9	233
24	Abnormal deep grey matter development following preterm birth detected using deformation-based morphometry. NeuroImage, 2006, 32, 70-78.	2.1	220
25	Multimodal surface matching with higher-order smoothness constraints. NeuroImage, 2018, 167, 453-465.	2.1	219
26	The influence of preterm birth on the developing thalamocortical connectome. Cortex, 2013, 49, 1711-1721.	1.1	202
27	Thalamocortical Connectivity Predicts Cognition in Children Born Preterm. Cerebral Cortex, 2015, 25, 4310-4318.	1.6	201
28	Early development of structural networks and the impact of prematurity on brain connectivity. NeuroImage, 2017, 149, 379-392.	2.1	187
29	Development of BOLD signal hemodynamic responses in the human brain. NeuroImage, 2012, 63, 663-673.	2.1	172
30	Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial. Lancet Neurology, The, 2016, 15, 145-153.	4.9	170
31	Regional growth and atlasing of the developing human brain. NeuroImage, 2016, 125, 456-478.	2.1	167
32	Quantification of Deep Gray Matter in Preterm Infants at Term-Equivalent Age Using Manual Volumetry of 3-Tesla Magnetic Resonance Images. Pediatrics, 2007, 119, 759-765.	1.0	155
33	An optimised tract-based spatial statistics protocol for neonates: Applications to prematurity and chronic lung disease. NeuroImage, 2010, 53, 94-102.	2.1	154
34	Seven- to eight-year follow-up of the CoolCap trial of head cooling for neonatal encephalopathy. Pediatric Research, 2012, 71, 205-209.	1.1	151
35	A common neonatal image phenotype predicts adverse neurodevelopmental outcome in children born preterm. Neurolmage, 2010, 52, 409-414.	2.1	147
36	Relationship Between White Matter Apparent Diffusion Coefficients in Preterm Infants at Term-Equivalent Age and Developmental Outcome at 2 Years. Pediatrics, 2007, 120, e604-e609.	1.0	134

#	Article	IF	CITATIONS
37	Magnetic resonance imaging of preterm brain injury. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2003, 88, 269F-274.	1.4	133
38	Oxidative Metabolism, Apoptosis and Perinatal Brain Injury. Brain Pathology, 1999, 9, 93-117.	2.1	133
39	Specialization and integration of functional thalamocortical connectivity in the human infant. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6485-6490.	3.3	130
40	Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. Neurolmage, 2019, 185, 750-763.	2.1	127
41	MR imaging assessment of myelination in the very preterm brain. American Journal of Neuroradiology, 2002, 23, 872-81.	1.2	125
42	Perinatal cortical growth and childhood neurocognitive abilities. Neurology, 2011, 77, 1510-1517.	1.5	103
43	Somatosensory cortical activation identified by functional MRI in preterm and term infants. NeuroImage, 2010, 49, 2063-2071.	2.1	102
44	Regional changes in thalamic shape and volume with increasing age. NeuroImage, 2012, 63, 1134-1142.	2.1	100
45	Decreased microglial Wnt/l²-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain, 2019, 142, 3806-3833.	3.7	97
46	Smaller cerebellar volumes in very preterm infants at term-equivalent age are associated with the presence of supratentorial lesions. American Journal of Neuroradiology, 2006, 27, 573-9.	1.2	97
47	Measurement of Cerebral Blood Flow in Newborn Infants Using Near Infrared Spectroscopy with Indocyanine Green. Pediatric Research, 1998, 43, 34-39.	1.1	93
48	Machine-learning to characterise neonatal functional connectivity in the preterm brain. NeuroImage, 2016, 124, 267-275.	2.1	92
49	Early growth in brain volume is preserved in the majority of preterm infants. Annals of Neurology, 2007, 62, 185-192.	2.8	89
50	Persistent Increases in Cerebral Lactate Concentration after Birth Asphyxia. Pediatric Research, 1998, 44, 304-311.	1.1	89
51	Whole-Brain Mapping of Structural Connectivity in Infants Reveals Altered Connection Strength Associated with Growth and Preterm Birth. Cerebral Cortex, 2014, 24, 2324-2333.	1.6	88
52	Therapeutic hypothermia following perinatal asphyxia. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2006, 91, F127-F131.	1.4	87
53	Exploring the multiple-hit hypothesis of preterm white matter damage using diffusion MRI. NeuroImage: Clinical, 2018, 17, 596-606.	1.4	87
54	Identifying population differences in whole-brain structural networks: A machine learning approach. NeuroImage, 2010, 50, 910-919.	2.1	86

#	Article	IF	CITATIONS
55	Effect of MRI on preterm infants and their families: a randomised trial with nested diagnostic and economic evaluation. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2018, 103, F15-F21.	1.4	86
56	Perinatal brain damage: The term infant. Neurobiology of Disease, 2016, 92, 102-112.	2.1	85
57	Construction of a neonatal cortical surface atlas using Multimodal Surface Matching in the Developing Human Connectome Project. NeuroImage, 2018, 179, 11-29.	2.1	83
58	The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants. NeuroImage, 2020, 223, 117303.	2.1	81
59	Diffusion Tensor Imaging in Preterm Infants With Punctate White Matter Lesions. Pediatric Research, 2011, 69, 561-566.	1.1	80
60	Magnetic Resonance Imaging of the Newborn Brain: Automatic Segmentation of Brain Images into 50 Anatomical Regions. PLoS ONE, 2013, 8, e59990.	1.1	78
61	The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity. Brain, 2021, 144, 2199-2213.	3.7	75
62	Early Increases in Brain myo-Inositol Measured by Proton Magnetic Resonance Spectroscopy in Term Infants with Neonatal Encephalopathy. Pediatric Research, 2001, 50, 692-700.	1.1	74
63	Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nature Communications, 2017, 8, 428.	5.8	74
64	Annual Research Review: Not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 350-371.	3.1	73
65	Different patterns of cortical maturation before and after 38 weeks gestational age demonstrated by diffusion MRI in vivo. NeuroImage, 2019, 185, 764-775.	2.1	73
66	Timeâ€efficient and flexible design of optimized multishell HARDI diffusion. Magnetic Resonance in Medicine, 2018, 79, 1276-1292.	1.9	72
67	Maturation of Sensori-Motor Functional Responses in the Preterm Brain. Cerebral Cortex, 2016, 26, 402-413.	1.6	71
68	Confidence in the prediction of neurodevelopmental outcome by cranial ultrasound and MRI in preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2010, 95, F388-F390.	1.4	70
69	Reinforcement of the Brain's Rich-Club Architecture Following Early Neurodevelopmental Disruption Caused by Very Preterm Birth. Cerebral Cortex, 2016, 26, 1322-1335.	1.6	69
70	Somatotopic Mapping of the Developing Sensorimotor Cortex in the Preterm Human Brain. Cerebral Cortex, 2018, 28, 2507-2515.	1.6	68
71	Localization of spontaneous bursting neuronal activity in the preterm human brain with simultaneous EEG-fMRI. ELife, 2017, 6, .	2.8	68
72	Functional cardiac MRI in preterm and term newborns. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2011, 96, F86-F91.	1.4	64

#	Article	IF	CITATIONS
73	Multimodal image analysis of clinical influences on preterm brain development. Annals of Neurology, 2017, 82, 233-246.	2.8	61
74	Impaired development of the cerebral cortex in infants with congenital heart disease is correlated to reduced cerebral oxygen delivery. Scientific Reports, 2017, 7, 15088.	1.6	60
75	Apoptosis in perinatal hypoxic-ischaemic cerebral damage. Neuropathology and Applied Neurobiology, 1996, 22, 494-498.	1.8	59
76	Treatment of hypoxic-ischaemic brain damage by moderate hypothermia. Archives of Disease in Childhood: Fetal and Neonatal Edition, 1998, 78, F85-F88.	1.4	57
77	Diffusion magnetic resonance imaging in preterm brain injury. Neuroradiology, 2013, 55, 65-95.	1.1	56
78	Punctate White Matter Lesions Associated With Altered Brain Development And Adverse Motor Outcome In Preterm Infants. Scientific Reports, 2017, 7, 13250.	1.6	56
79	Interneuron Development Is Disrupted in Preterm Brains With Diffuse White Matter Injury: Observations in Mouse and Human. Frontiers in Physiology, 2019, 10, 955.	1.3	55
80	Maternal Prenatal Stress Is Associated With Altered Uncinate Fasciculus Microstructure in Premature Neonates. Biological Psychiatry, 2020, 87, 559-569.	0.7	55
81	Development of human white matter pathways in utero over the second and third trimester. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	55
82	Heterogeneity in Brain Microstructural Development Following Preterm Birth. Cerebral Cortex, 2020, 30, 4800-4810.	1.6	54
83	Development of the optic radiations and visual function after premature birth. Cortex, 2014, 56, 30-37.	1.1	49
84	Abnormal Microstructural Development of the Cerebral Cortex in Neonates With Congenital Heart Disease Is Associated With Impaired Cerebral Oxygen Delivery. Journal of the American Heart Association, 2019, 8, e009893.	1.6	48
85	Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND). Scientific Reports, 2018, 8, 4011.	1.6	47
86	A framework for multi-component analysis of diffusion MRI data over the neonatal period. NeuroImage, 2019, 186, 321-337.	2.1	47
87	Modelling brain development to detect white matter injury in term and preterm born neonates. Brain, 2020, 143, 467-479.	3.7	44
88	Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI. NeuroImage, 2021, 225, 117437.	2.1	44
89	The Cerebral Hemodynamic Response to Asphyxia and Hypoxia in the Near-term Fetal Sheep as Measured by Near Infrared Spectroscopy. Pediatric Research, 1998, 44, 951-957.	1.1	44
90	Common Genetic Variants and Risk of Brain Injury After Preterm Birth. Pediatrics, 2014, 133, e1655-e1663.	1.0	43

6

#	Article	IF	CITATIONS
91	Development of Microstructural and Morphological Cortical Profiles in the Neonatal Brain. Cerebral Cortex, 2020, 30, 5767-5779.	1.6	42
92	The Developing Human Connectome Project Neonatal Data Release. Frontiers in Neuroscience, 2022, 16,	1.4	42
93	Ventricular remodeling in preterm infants: computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatric Research, 2019, 85, 807-815.	1.1	41
94	A patient care system for early 3.0Tesla magnetic resonance imaging of very low birth weight infants. Early Human Development, 2009, 85, 779-783.	0.8	40
95	The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy. Neuroradiology, 2014, 56, 985-994.	1.1	40
96	Language ability in preterm children is associated with arcuate fasciculi microstructure at term. Human Brain Mapping, 2017, 38, 3836-3847.	1.9	40
97	Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age. NeuroImage, 2021, 243, 118488.	2.1	40
98	Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biology, 2020, 18, e3000976.	2.6	38
99	Neuroimaging findings in newborns with congenital heart disease prior to surgery: an observational study. Archives of Disease in Childhood, 2019, 104, 1042-1048.	1.0	37
100	A tract-specific approach to assessing white matter in preterm infants. Neurolmage, 2017, 157, 675-694.	2.1	35
101	The pharmacology of inhaled nitric oxide Archives of Disease in Childhood: Fetal and Neonatal Edition, 1995, 72, F127-F130.	1.4	32
102	Magnetic resonance imaging of the brain of premature infants. Lancet, The, 1997, 349, 1741.	6.3	31
103	Emerging functional connectivity differences in newborn infants vulnerable to autism spectrum disorders. Translational Psychiatry, 2020, 10, 131.	2.4	31
104	Characterising brain network topologies: A dynamic analysis approach using heat kernels. NeuroImage, 2016, 141, 490-501.	2.1	29
105	Machine learning shows association between genetic variability in <i>PPARG</i> and cerebral connectivity in preterm infants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13744-13749.	3.3	29
106	Fixel-based analysis of the preterm brain: Disentangling bundle-specific white matter microstructural and macrostructural changes in relation to clinical risk factors. NeuroImage: Clinical, 2019, 23, 101820.	1.4	27
107	Perinatal Hypoxia-Ischemia and Brain Injury. Pediatric Research, 2000, 47, 431-432.	1.1	27
108	Testing the Sensitivity of Tract-Based Spatial Statistics to Simulated Treatment Effects in Preterm Neonates. PLoS ONE, 2013, 8, e67706.	1.1	27

#	Article	IF	CITATIONS
109	Computerâ€controlled stimulation for functional magnetic resonance imaging studies of the neonatal olfactory system. Acta Paediatrica, International Journal of Paediatrics, 2013, 102, 868-875.	0.7	25
110	Possible relationship between common genetic variation and white matter development in a pilot study of preterm infants. Brain and Behavior, 2016, 6, e00434.	1.0	25
111	Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury. Brain, Behavior, and Immunity, 2018, 74, 265-276.	2.0	25
112	A lateral-to-mesial organization of human ventral visual cortex at birth. Brain Structure and Function, 2018, 223, 3107-3119.	1.2	25
113	MRI Findings at Term-Corrected Age and Neurodevelopmental Outcomes in a Large Cohort of Very Preterm Infants. American Journal of Neuroradiology, 2020, 41, 1509-1516.	1.2	25
114	Associations Between Neonatal Brain Structure, the Home Environment, and Childhood Outcomes Following Very Preterm Birth. Biological Psychiatry Global Open Science, 2021, 1, 146-155.	1.0	25
115	Cost-Effectiveness of Therapeutic Hypothermia to Treat Neonatal Encephalopathy. Value in Health, 2010, 13, 695-702.	0.1	24
116	Neurodevelopmental Outcomes following Intrauterine Growth Restriction and Very Preterm Birth. Journal of Pediatrics, 2021, 238, 135-144.e10.	0.9	24
117	Cerebello-cerebral connectivity in the developing brain. Brain Structure and Function, 2017, 222, 1625-1634.	1.2	22
118	Cognitive function in toddlers with congenital heart disease: The impact of a stimulating home environment. Infancy, 2021, 26, 184-199.	0.9	21
119	An eye tracking based virtual reality system for use inside magnetic resonance imaging systems. Scientific Reports, 2021, 11, 16301.	1.6	21
120	Neuroimaging in the term newborn with neonatal encephalopathy. Seminars in Fetal and Neonatal Medicine, 2021, 26, 101304.	1.1	21
121	Individualized brain development and cognitive outcome in infants with congenital heart disease. Brain Communications, 2021, 3, fcab046.	1.5	19
122	Phenotyping the Preterm Brain: Characterizing Individual Deviations From Normative Volumetric Development in Two Large Infant Cohorts. Cerebral Cortex, 2021, 31, 3665-3677.	1.6	19
123	Prospective qualification of early cerebral biomarkers in a randomised trial of treatment with xenon combined with moderate hypothermia after birth asphyxia. EBioMedicine, 2019, 47, 484-491.	2.7	18
124	A dataâ€driven approach to optimising the encoding for multiâ€shell diffusion MRI with application to neonatal imaging. NMR in Biomedicine, 2020, 33, e4348.	1.6	18
125	Brain Development in Preterm Infants Assessed Using Advanced MRI Techniques. Clinics in Perinatology, 2014, 41, 25-45.	0.8	17
126	Hypothermia for perinatal asphyxia: trial-based quality of life at 6–7 years. Archives of Disease in Childhood, 2018, 103, 654-659.	1.0	17

#	Article	IF	CITATIONS
127	Investigating altered brain development in infants with congenital heart disease using tensor-based morphometry. Scientific Reports, 2020, 10, 14909.	1.6	17
128	Increased Nitric Oxide Synthesis Is Not Involved in Delayed Cerebral Energy Failure following Focal Hypoxic-Ischemic Injury to the Developing Brain. Pediatric Research, 1999, 46, 224-231.	1.1	17
129	The Discovery of Hypothermic Neural Rescue Therapy for Perinatal Hypoxic-Ischemic Encephalopathy. Seminars in Pediatric Neurology, 2009, 16, 200-206.	1.0	16
130	Incidental findings on brain MR imaging of asymptomatic term neonates in the Developing Human Connectome Project. EClinicalMedicine, 2021, 38, 100984.	3.2	16
131	Functional thalamocortical connectivity at term equivalent age and outcome at 2 years in infants born preterm. Cortex, 2021, 135, 17-29.	1.1	15
132	Intraoperative hyperspectral label-free imaging: from system design to first-in-patient translation. Journal Physics D: Applied Physics, 2021, 54, 294003.	1.3	15
133	Reduced structural connectivity in cortico-striatal-thalamic network in neonates with congenital heart disease. NeuroImage: Clinical, 2020, 28, 102423.	1.4	14
134	Nitric Oxide Synthase Inhibition and Delayed Cerebral Injury after Severe Cerebral Ischemia in Fetal Sheep. Pediatric Research, 1999, 46, 8-13.	1.1	14
135	Neonatal amygdala resting-state functional connectivity and socio-emotional development in very preterm children. Brain Communications, 2022, 4, fcac009.	1.5	14
136	Neonatal cardiac MRI using prolonged balanced SSFP imaging at 3T with active frequency stabilization. Magnetic Resonance in Medicine, 2013, 70, 776-784.	1.9	13
137	Hypothermia for perinatal asphyxia: trial-based resource use and costs at 6–7 years. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2019, 104, F285-F292.	1.4	13
138	Polygenic risk for neuropsychiatric disease and vulnerability to abnormal deep grey matter development. Scientific Reports, 2019, 9, 1976.	1.6	13
139	Parental age effects on neonatal white matter development. NeuroImage: Clinical, 2020, 27, 102283.	1.4	12
140	Multivariate Statistical Analysis of Whole Brain Structural Networks Obtained Using Probabilistic Tractography. Lecture Notes in Computer Science, 2008, 11, 486-493.	1.0	12
141	Neonatal multi-modal cortical profiles predict 18-month developmental outcomes. Developmental Cognitive Neuroscience, 2022, 54, 101103.	1.9	11
142	Predicting age and clinical risk from the neonatal connectome. NeuroImage, 2022, 257, 119319.	2.1	11
143	Early postnatal maternal trait anxiety is associated with the behavioural outcomes of children born preterm <33 weeks. Journal of Psychiatric Research, 2020, 131, 160-168.	1.5	10
144	Diffusion magnetic resonance imaging assessment of regional white matter maturation in preterm neonates. Neuroradiology, 2021, 63, 573-583.	1.1	10

#	Article	IF	CITATIONS
145	43 Maple syrup urine disease metabolites induce apoptosis in neural cells without cytochrome c release or changes in mitochondrial membrane potential. Biochemical Society Transactions, 1998, 26, S341-S341.	1.6	9
146	4D phase contrast MRI in the preterm infant: visualisation of patent ductus arteriosus. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2015, 100, F164-F164.	1.4	9
147	Harmonized Segmentation of Neonatal Brain MRI. Frontiers in Neuroscience, 2021, 15, 662005.	1.4	9
148	Multi-Channel 4D Parametrized Atlas of Macro- and Microstructural Neonatal Brain Development. Frontiers in Neuroscience, 2021, 15, 661704.	1.4	8
149	Impact of maternal obesity on neonatal heart rate and cardiac size. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2022, 107, 481-487.	1.4	8
150	Inference of functional connectivity from structural brain connectivity. , 2010, , .		7
151	Cortical Processing of Multimodal Sensory Learning in Human Neonates. Cerebral Cortex, 2021, 31, 1827-1836.	1.6	7
152	Hypothermic neural rescue treatment: from laboratory to cotside?. Archives of Disease in Childhood: Fetal and Neonatal Edition, 1998, 78, F88-F91.	1.4	7
153	New mothers' experiences of the urban environment with their preterm infants involve complex social, emotional and psychological processes. Acta Paediatrica, International Journal of Paediatrics, 2017, 106, 405-410.	0.7	6
154	Exploring the relationship between maternal prenatal stress and brain structure in premature neonates. PLoS ONE, 2021, 16, e0250413.	1.1	6
155	The factor structure of the Edinburgh Postnatal Depression Scale among perinatal high-risk and community samples in London. Archives of Women's Mental Health, 2022, 25, 157-169.	1.2	6
156	Development of functional organization within the sensorimotor network across the perinatal period. Human Brain Mapping, 2022, 43, 2249-2261.	1.9	6
157	Multidisciplinary: research priorities for the COVID-19 pandemic. Lancet Psychiatry,the, 2020, 7, e35.	3.7	5
158	The developing brain structural and functional connectome fingerprint. Developmental Cognitive Neuroscience, 2022, 55, 101117.	1.9	5
159	Automatic segmentation of pediatric brain MRIs using a maximum probability pediatric atlas. , 2012, , .		4
160	Neonatal hypoxic ischaemic encephalopathy: current and future treatment options. Expert Opinion on Orphan Drugs, 2015, 3, 357-377.	0.5	4
161	Encephalopathy of prematurity. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2020, 105, 458-459.	1.4	4
162	Effects of gestational age at birth on perinatal structural brain development in healthy termâ€born babies. Human Brain Mapping, 2022, 43, 1577-1589.	1.9	3

#	Article	IF	CITATIONS
163	A dedicated neonatal brain imaging system. Magnetic Resonance in Medicine, 2017, 78, C1-C1.	1.9	2
164	Investigating Image Registration Impact on Preterm Birth Classification: An Interpretable Deep Learning Approach. Lecture Notes in Computer Science, 2019, , 104-112.	1.0	2
165	Harmonised Segmentation of Neonatal Brain MRI: A Domain Adaptation Approach. Lecture Notes in Computer Science, 2020, , 253-263.	1.0	2
166	Normalisation of Neonatal Brain Network Measures Using Stochastic Approaches. Lecture Notes in Computer Science, 2013, 16, 574-581.	1.0	2
167	Early Childhood Temperamental Trajectories following Very Preterm Birth and Their Association with Parenting Style. Children, 2022, 9, 508.	0.6	2
168	In-unit neonatal magnetic resonance imaging—new possibilities offered by low-field technology. Journal of Perinatology, 2022, 42, 843-844.	0.9	2
169	126 Cardiac Mri At 3.0 Tesla in Preterm Infants. Pediatric Research, 2005, 58, 376-376.	1.1	1
170	304 Detection of Vascular Expression of E-Selectin in Vivo by Mr Imaging. Pediatric Research, 2005, 58, 407-407.	1.1	1
171	Construction of a dynamic 4D probabilistic atlas for the developing brain. , 2010, , .		1
172	Neural Differentiation of Fetal Mesenchymal Stem Cells. Clinical Science, 2003, 104, 44P-44P.	0.0	0
173	71 Diffusion Tractography of the Corticospinal Tracts in the Developing Preterm Brain. Pediatric Research, 2005, 58, 366-366.	1.1	0
174	Greater genetic risk for adult psychiatric diseases increases vulnerability to adverse outcome after preterm birth. Scientific Reports, 2021, 11, 11443.	1.6	0
175	Detection of Injury and Automated Triage of Preterm Neonatal MRI Using Patch-Based Gaussian Processes. Lecture Notes in Computer Science, 2021, , 231-241.	1.0	0
176	Prevention of acquired neurological impairment in the perinatal period. Journal of Neurology, Neurosurgery and Psychiatry, 1997, 63, 34S-38S.	0.9	0