
Julianne O'Reilly-Wapstra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9479947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of a segregation method to sort fast-grown Eucalyptus nitens (H. Deane & Maiden) Maiden plantation trees and logs for higher quality structural timber products. Annals of Forest Science, 2022, 79, .	2.0	2
2	Quality traits of plantation Eucalyptus nitens logs impacting volume and value recovery of structural sawn boards. European Journal of Wood and Wood Products, 2022, 80, 657-668.	2.9	1
3	Consistent community genetic effects in the context of strong environmental and temporal variation in Eucalyptus. Oecologia, 2021, 195, 367-382.	2.0	5
4	Development of Non-Destructive-Testing Based Selection and Grading Strategies for Plantation Eucalyptus nitens Sawn Boards. Forests, 2021, 12, 343.	2.1	7
5	Developing near infrared spectroscopy models for predicting chemistry and responses to stress in <i>Pinus radiata</i> (D. Don). Journal of Near Infrared Spectroscopy, 2021, 29, 245-256.	1.5	8
6	Characterisation of wood quality of Eucalyptus nitens plantations and predictive models of density and stiffness with site and tree characteristics. Forest Ecology and Management, 2021, 491, 118992.	3.2	9
7	Thinning Influences Wood Properties of Plantation-Grown Eucalyptus nitens at Three Sites in Tasmania. Forests, 2021, 12, 1304.	2.1	2
8	Friction correction when predicting wood basic density using drilling resistance. Holzforschung, 2021, 75, 508-516.	1.9	13
9	Chemical Traits that Predict Susceptibility of Pinus radiata to Marsupial Bark Stripping. Journal of Chemical Ecology, 2021, , 1.	1.8	3
10	Additive genetic variation in Pinus radiata bark chemistry and the chemical traits associated with variation in mammalian bark stripping. Heredity, 2021, 127, 498-509.	2.6	10
11	Wood Properties Characterisation of Thermo-Hydro Mechanical Treated Plantation and Native Tasmanian Timber Species. Forests, 2020, 11, 1189.	2.1	5
12	Quantitative Genetic Variation in Bark Stripping of Pinus radiata. Forests, 2020, 11, 1356.	2.1	11
13	Forest fire may disrupt plant–microbial feedbacks. Plant Ecology, 2018, 219, 497-504.	1.6	6
14	Phylogenetic trait conservatism predicts patterns of plantâ€soil feedback. Ecosphere, 2018, 9, e02409.	2.2	7
15	A water availability gradient reveals the deficit level required to affect traits in potted juvenileEucalyptus globulus. Annals of Botany, 2017, 119, mcw266.	2.9	7
16	Nitrification potential in the rhizosphere of Australian native vegetation. Soil Research, 2017, 55, 58.	1.1	12
17	The Extended Community-Level Effects of Genetic Variation in Foliar Wax Chemistry in the Forest Tree Eucalyptus globulus. Journal of Chemical Ecology, 2017, 43, 532-542.	1.8	9
18	Genetic stability of physiological responses to defoliation in a eucalypt and altered chemical defence in regrowth foliage. Tree Physiology, 2017, 37, 220-235.	3.1	6

JULIANNE O'REILLY-WAPSTRA

#	Article	IF	CITATIONS
19	Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within <i>Eucalyptus</i> species. Tree Physiology, 2016, 36, tpv106.	3.1	24
20	Genetic control of cuticular wax compounds in <i>Eucalyptus globulus</i> . New Phytologist, 2016, 209, 202-215.	7.3	23
21	Survival and recovery of Eucalyptus globulus seedlings from severe defoliation. Forest Ecology and Management, 2016, 379, 243-251.	3.2	12
22	Phylogeny Explains Variation in The Root Chemistry of Eucalyptus Species. Journal of Chemical Ecology, 2016, 42, 1086-1097.	1.8	26
23	Population divergence in the ontogenetic trajectories of foliar terpenes of a Eucalyptus species. Annals of Botany, 2015, 115, 159-170.	2.9	14
24	Direct and indirect effects of marsupial browsing on a foundation tree species. Oikos, 2015, 124, 515-524.	2.7	8
25	Genetic and Ontogenetic Variation in an Endangered Tree Structures Dependent Arthropod and Fungal Communities. PLoS ONE, 2014, 9, e114132.	2.5	7
26	Evolutionary History and Novel Biotic Interactions Determine Plant Responses to Elevated CO2 and Nitrogen Fertilization. PLoS ONE, 2014, 9, e114596.	2.5	2
27	Genetic Correlations in Multi-Species Plant/Herbivore Interactions at Multiple Genetic Scales. Advances in Ecological Research, 2014, 50, 267-295.	2.7	6
28	When Ranges Collide. Advances in Ecological Research, 2014, 50, 297-350.	2.7	1
29	Pinus sylvestris sapling growth and recovery from mammalian browsing. Forest Ecology and Management, 2014, 325, 18-25.	3.2	14
30	Variable patterns of inheritance of ecologically important plant secondary metabolites in an inter-specific eucalypt hybrid. Forest Ecology and Management, 2014, 318, 71-77.	3.2	5
31	Effect of limited water availability on foliar plant secondary metabolites of two Eucalyptus species. Environmental and Experimental Botany, 2014, 105, 55-64.	4.2	58
32	Genetic analysis of the near-infrared spectral phenome of a global Eucalyptus species. Tree Genetics and Genomes, 2013, 9, 943-959.	1.6	13
33	Habitat fragmentation in forests affects relatedness and spatial genetic structure of a native rodent, <i><scp>R</scp>attus lutreolus</i> . Austral Ecology, 2013, 38, 568-580.	1.5	9
34	Phylogenetic Responses of Forest Trees to Global Change. PLoS ONE, 2013, 8, e60088.	2.5	14
35	Chemical Variation in a Dominant Tree Species: Population Divergence, Selection and Genetic Stability across Environments. PLoS ONE, 2013, 8, e58416.	2.5	31
36	Short-term responses of native rodents to aggregated retention in old growth wet Eucalyptus forests. Forest Ecology and Management, 2012, 267, 18-27.	3.2	8

#	Article	IF	CITATIONS
37	Natural selection for anti-herbivore plant secondary metabolites. , 2012, , 10-33.		5
38	From genes to ecosystems. , 2012, , 269-286.		10
39	Mammalian herbivores reveal marked genetic divergence among populations of an endangered plant species. Oikos, 2012, 121, 268-276.	2.7	8
40	Stability of Plant Defensive Traits Among Populations in Two Eucalyptus Species Under Elevated Carbon Dioxide. Journal of Chemical Ecology, 2012, 38, 204-212.	1.8	32
41	Field screening for genetic-based susceptibility to mammalian browsing. Forest Ecology and Management, 2011, 262, 1500-1506.	3.2	6
42	Repellent and stocking guards reduce mammal browsing in eucalypt plantations. New Forests, 2011, 42, 301-316.	1.7	8
43	Quantitative trait loci for foliar terpenes in a global eucalypt species. Tree Genetics and Genomes, 2011, 7, 485-498.	1.6	37
44	Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1337-1345.	4.0	60
45	Native plant/herbivore interactions as determinants of the ecological and evolutionary effects of invasive mammalian herbivores: the case of the common brushtail possum. Biological Invasions, 2010, 12, 373-387.	2.4	9
46	A footprint of treeâ \in genetics on the biota of the forest floor. Oikos, 2009, 118, 1917-1923.	2.7	32
47	Non-lethal strategies to reduce browse damage in eucalypt plantations. Forest Ecology and Management, 2009, 259, 45-55.	3.2	14
48	A geographic mosaic of genetic variation within a foundation tree species and its community-level consequences. Ecology, 2009, 90, 1762-1772.	3.2	125
49	Quantitative trait loci for key defensive compounds affecting herbivory of eucalypts in Australia. New Phytologist, 2008, 178, 846-851.	7.3	34
50	Effectiveness of repellents for reducing damage to eucalypt seedlings by browsing mammals. Australian Forestry, 2008, 71, 303-310.	0.9	8
51	Discrimination between seedlings of Eucalyptus globulus, E. nitens and their F1 hybrid using near-infrared reflectance spectroscopy and foliar oil content. Silvae Genetica, 2008, 57, 262-269.	0.8	20
52	Assessment and Implications of Intraspecific and Phenological Variability in Monoterpenes of Scots Pine (Pinus sylvestris) Foliage. Journal of Chemical Ecology, 2007, 33, 477-491.	1.8	46
53	Stability of Genetic-Based Defensive Chemistry Across Life Stages in a Eucalyptus Species. Journal of Chemical Ecology, 2007, 33, 1876-1884.	1.8	26
54	The role of genetic and chemical variation of Pinus sylvestris seedlings in influencing slug herbivory. Oecologia, 2007, 152, 82-91.	2.0	25

JULIANNE O'REILLY-WAPSTRA

#	Article	IF	CITATIONS
55	Effects of nutrient variability on the genetic-based resistance of Eucalyptus globulus to a mammalian herbivore and on plant defensive chemistry. Oecologia, 2005, 142, 597-605.	2.0	50
56	Inheritance Of Resistance to Mammalian Herbivores and of Plant Defensive Chemistry in an Eucalyptus Species. Journal of Chemical Ecology, 2005, 31, 357-375.	1.8	22
57	Inheritance Of Resistance To Mammalian Herbivores and Of Plant Defensive Chemistry In A Eucalyptus Species. Journal of Chemical Ecology, 2005, 31, 519-537.	1.8	11
58	Linking plant genotype, plant defensive chemistry and mammal browsing in a Eucalyptus species. Functional Ecology, 2004, 18, 677-684.	3.6	92
59	Genetic variation in resistance of Eucalyptus globulus to marsupial browsers. Oecologia, 2002, 130, 289-296.	2.0	57
60	Geographic Variation in Age and Size at Maturity in a Small Australian Viviparous Skink. Copeia, 2001, 2001, 646-655.	1.3	68
61	Damage to and intake of plantation seedlings by captive European rabbits (<i>Oryctolagus) Tj ETQq1 1 0.784314</i>	rgBT /Ov	erlock 10 Tf
62	Geographic and annual variation in reproductive cycles in the Tasmanian spotted snow skink, Niveoscincus ocellatus (Squamata : Scincidae). Australian Journal of Zoology, 1999, 47, 539.	1.0	53
63	Variation in constitutive and induced chemistry in the needles, bark and roots of young Pinus radiata trees. Trees - Structure and Function, 0, , 1.	1.9	5
64	Effects of thinning on the longitudinal and radial variation in wood properties of <i>Eucalyptus nitens</i> . Forestry, 0, , .	2.3	1