Michael J Owen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9478382/publications.pdf Version: 2024-02-01

		1097	832
357	71,417	112	245
papers	citations	h-index	g-index
419	419	419	58900
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mental Health Research, shared goals. Journal of Mental Health, 2023, 32, 1017-1017.	1.0	0
2	Striatal dopaminergic alterations in individuals with copy number variants at the 22q11.2 genetic locus and their implications for psychosis risk: a [18F]-DOPA PET study. Molecular Psychiatry, 2023, 28, 1995-2006.	4.1	13
3	Psychopathology in adults with copy number variants. Psychological Medicine, 2023, 53, 3142-3149.	2.7	6
4	Genetic risk for schizophrenia is associated with increased proportion of indirect connections in brain networks revealed by a semi-metric analysis: evidence from population sample stratified for polygenic risk. Cerebral Cortex, 2023, 33, 2997-3011.	1.6	1
5	Assessment of emotions and behaviour by the Developmental Behaviour Checklist in young people with neurodevelopmental CNVs. Psychological Medicine, 2022, 52, 574-586.	2.7	7
6	Examining pathways between genetic liability for schizophrenia and patterns of tobacco and cannabis use in adolescence. Psychological Medicine, 2022, 52, 132-139.	2.7	7
7	Effects of copy number variations on brain structure and risk for psychiatric illness: Largeâ€scale studies from the <scp>ENIGMA</scp> working groups on <scp>CNVs</scp> . Human Brain Mapping, 2022, 43, 300-328.	1.9	30
8	A normative chart for cognitive development in a genetically selected population. Neuropsychopharmacology, 2022, 47, 1379-1386.	2.8	12
9	Lack of Support for the Genes by Early Environment Interaction Hypothesis in the Pathogenesis of Schizophrenia. Schizophrenia Bulletin, 2022, 48, 20-26.	2.3	19
10	Using induced pluripotent stem cells to investigate human neuronal phenotypes in 1q21.1 deletion and duplication syndrome. Molecular Psychiatry, 2022, 27, 819-830.	4.1	9
11	Identifying the Common Genetic Basis of Antidepressant Response. Biological Psychiatry Global Open Science, 2022, 2, 115-126.	1.0	31
12	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biological Psychiatry, 2022, 91, 313-327.	0.7	114
13	Complement C3 and C3aR mediate different aspects of emotional behaviours; relevance to risk for psychiatric disorder. Brain, Behavior, and Immunity, 2022, 99, 70-82.	2.0	11
14	The nature of schizophrenia: As broad as it is long. Schizophrenia Research, 2022, 242, 109-112.	1.1	4
15	Interaction Testing and Polygenic Risk Scoring to Estimate the Association of Common Genetic Variants With Treatment Resistance in Schizophrenia. JAMA Psychiatry, 2022, 79, 260.	6.0	44
16	Transcriptional programs regulating neuronal differentiation are disrupted in DLG2 knockout human embryonic stem cells and enriched for schizophrenia and related disorders risk variants. Nature Communications, 2022, 13, 27.	5.8	8
17	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	13.7	929
18	Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature, 2022, 604, 509-516.	13.7	326

#	Article	IF	CITATIONS
19	Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nature Genetics, 2022, 54, 541-547.	9.4	65
20	Schizophrenia Polygenic Risk and Experiences of Childhood Adversity: A Systematic Review and Meta-analysis. Schizophrenia Bulletin, 2022, 48, 967-980.	2.3	21
21	Machine learning for prediction of schizophrenia using genetic and demographic factors in the UK biobank. Schizophrenia Research, 2022, 246, 156-164.	1.1	10
22	Genetic association of FMRP targets with psychiatric disorders. Molecular Psychiatry, 2021, 26, 2977-2990.	4.1	22
23	Cis-effects on gene expression in the human prenatal brain associated with genetic risk for neuropsychiatric disorders. Molecular Psychiatry, 2021, 26, 2082-2088.	4.1	23
24	Large-Scale Genomics: A Paradigm Shift in Psychiatry?. Biological Psychiatry, 2021, 89, 5-7.	0.7	14
25	Coordination difficulties, IQ and psychopathology in children with high-risk copy number variants. Psychological Medicine, 2021, 51, 290-299.	2.7	11
26	A Genetics-First Approach to Dissecting the Heterogeneity of Autism: Phenotypic Comparison of Autism Risk Copy Number Variants. American Journal of Psychiatry, 2021, 178, 77-86.	4.0	62
27	Neurotrophin receptor activation rescues cognitive and synaptic abnormalities caused by hemizygosity of the psychiatric risk gene Cacna1c. Molecular Psychiatry, 2021, 26, 1748-1760.	4.1	19
28	Prioritizing Genetic Contributors to Cortical Alterations in 22q11.2 Deletion Syndrome Using Imaging Transcriptomics. Cerebral Cortex, 2021, 31, 3285-3298.	1.6	10
29	The psychiatric phenotypes of 1q21 distal deletion and duplication. Translational Psychiatry, 2021, 11, 105.	2.4	6
30	1q21.1 distal copy number variants are associated with cerebral and cognitive alterations in humans. Translational Psychiatry, 2021, 11, 182.	2.4	24
31	Clozapine Metabolism is Associated With Absolute Neutrophil Count in Individuals With Treatment-Resistant Schizophrenia. Frontiers in Pharmacology, 2021, 12, 658734.	1.6	13
32	Risk Factors, Clinical Features, and Polygenic Risk Scores in Schizophrenia and Schizoaffective Disorder Depressive-Type. Schizophrenia Bulletin, 2021, 47, 1375-1384.	2.3	4
33	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	9.4	629
34	Genome-wide analyses of smoking behaviors in schizophrenia: Findings from the Psychiatric Genomics Consortium. Journal of Psychiatric Research, 2021, 137, 215-224.	1.5	10
35	Haploinsufficiency of the schizophrenia and autism risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms. Translational Psychiatry, 2021, 11, 313.	2.4	13
36	Explaining the missing heritability of psychiatric disorders. World Psychiatry, 2021, 20, 294-295.	4.8	18

#	Article	IF	CITATIONS
37	Clinical evaluation of patients with a neuropsychiatric risk copy number variant. Current Opinion in Genetics and Development, 2021, 68, 26-34.	1.5	12
38	Effects of eight neuropsychiatric copy number variants on human brain structure. Translational Psychiatry, 2021, 11, 399.	2.4	18
39	Rare Copy Number Variants Are Associated With Poorer Cognition in Schizophrenia. Biological Psychiatry, 2021, 90, 28-34.	0.7	20
40	Associations Between Schizophrenia Polygenic Liability, Symptom Dimensions, and Cognitive Ability in Schizophrenia. JAMA Psychiatry, 2021, 78, 1143.	6.0	41
41	Developmental Profile of Psychiatric Risk Associated With Voltage-Gated Cation Channel Activity. Biological Psychiatry, 2021, 90, 399-408.	0.7	10
42	Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nature Communications, 2021, 12, 5353.	5.8	44
43	Global Brain Flexibility During Working Memory Is Reduced in a High-Genetic-Risk Group for Schizophrenia. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 1176-1184.	1.1	6
44	Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Molecular Psychiatry, 2021, 26, 5239-5250.	4.1	15
45	Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Molecular Psychiatry, 2021, 26, 4496-4510.	4.1	87
46	Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Molecular Psychiatry, 2021, 26, 2070-2081.	4.1	48
47	Pharmacogenomics: A road ahead for precision medicine in psychiatry. Neuron, 2021, 109, 3914-3929.	3.8	25
48	Post-partum psychosis and its association with bipolar disorder in the UK: a case-control study using polygenic risk scores. Lancet Psychiatry,the, 2021, 8, 1045-1052.	3.7	12
49	Genetic risk for schizophrenia is associated with altered visually-induced gamma band activity: evidence from a population sample stratified polygenic risk. Translational Psychiatry, 2021, 11, 592.	2.4	3
50	The Relationship Between Polygenic Risk Scores and Cognition in Schizophrenia. Schizophrenia Bulletin, 2020, 46, 336-344.	2.3	60
51	Genetic liability to schizophrenia is negatively associated with educational attainment in UK Biobank. Molecular Psychiatry, 2020, 25, 703-705.	4.1	20
52	Clinical indicators of treatment-resistant psychosis. British Journal of Psychiatry, 2020, 216, 259-266.	1.7	48
53	Sleep problems and associations with psychopathology and cognition in young people with 22q11.2 deletion syndrome (22q11.2DS). Psychological Medicine, 2020, 50, 1191-1202.	2.7	26
54	Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size. Molecular Psychiatry, 2020, 25, 1822-1834.	4.1	122

#	Article	IF	CITATIONS
55	Altered white matter microstructure in 22q11.2 deletion syndrome: a multisite diffusion tensor imaging study. Molecular Psychiatry, 2020, 25, 2818-2831.	4.1	50
56	Characterization of Single Gene Copy Number Variants in Schizophrenia. Biological Psychiatry, 2020, 87, 736-744.	0.7	10
57	Association of Copy Number Variation of the 15q11.2 BP1-BP2 Region With Cortical and Subcortical Morphology and Cognition. JAMA Psychiatry, 2020, 77, 420.	6.0	54
58	A transcriptome-wide association study implicates specific pre- and post-synaptic abnormalities in schizophrenia. Human Molecular Genetics, 2020, 29, 159-167.	1.4	54
59	A Population-Based Cohort Study Examining the Incidence and Impact of Psychotic Experiences From Childhood to Adulthood, and Prediction of Psychotic Disorder. American Journal of Psychiatry, 2020, 177, 308-317.	4.0	98
60	The Duffy-null genotype and risk of infection. Human Molecular Genetics, 2020, 29, 3341-3349.	1.4	11
61	Impact of schizophrenia genetic liability on the association between schizophrenia and physical illness: data-linkage study. BJPsych Open, 2020, 6, e139.	0.3	2
62	Electrophysiological network alterations in adults with copy number variants associated with high neurodevelopmental risk. Translational Psychiatry, 2020, 10, 324.	2.4	8
63	Using common genetic variation to examine phenotypic expression and risk prediction in 22q11.2 deletion syndrome. Nature Medicine, 2020, 26, 1912-1918.	15.2	90
64	Movement Disorder Phenotypes in Children With 22q11.2 Deletion Syndrome. Movement Disorders, 2020, 35, 1272-1274.	2.2	10
65	A brief report: de novo copy number variants in children with attention deficit hyperactivity disorder. Translational Psychiatry, 2020, 10, 135.	2.4	18
66	The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 2020, 581, 434-443.	13.7	6,140
67	Transcript expression-aware annotation improves rare variant interpretation. Nature, 2020, 581, 452-458.	13.7	142
68	Response to letter to editor: "Knowing when and how to use epilepsy screening questionnaires― Epilepsia, 2020, 61, 826-827.	2.6	0
69	Increasing the Clinical Psychiatric Knowledge Base About Pathogenic Copy Number Variation. American Journal of Psychiatry, 2020, 177, 204-209.	4.0	26
70	Reinforcement learning as an intermediate phenotype in psychosis? Deficits sensitive to illness stage but not associated with polygenic risk of schizophrenia in the general population. Schizophrenia Research, 2020, 222, 389-396.	1.1	16
71	A Mendelian randomization study of the causal association between anxiety phenotypes and schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 360-369.	1.1	10
72	Cognitive deficits in childhood, adolescence and adulthood in 22q11.2 deletion syndrome and association with psychopathology. Translational Psychiatry, 2020, 10, 53.	2.4	28

#	Article	IF	CITATIONS
73	Mapping Subcortical Brain Alterations in 22q11.2 Deletion Syndrome: Effects of Deletion Size and Convergence With Idiopathic Neuropsychiatric Illness. American Journal of Psychiatry, 2020, 177, 589-600.	4.0	55
74	De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nature Neuroscience, 2020, 23, 179-184.	7.1	100
75	Identifying schizophrenia patients who carry pathogenic genetic copy number variants using standard clinical assessment: retrospective cohort study. British Journal of Psychiatry, 2020, 216, 275-279.	1.7	12
76	Translating insights from neuropsychiatric genetics and genomics for precision psychiatry. Genome Medicine, 2020, 12, 43.	3.6	53
77	Area deprivation, urbanicity, severe mental illness and social drift — A population-based linkage study using routinely collected primary and secondary care data. Schizophrenia Research, 2020, 220, 130-140.	1.1	26
78	Cyfip1 haploinsufficient rats show white matter changes, myelin thinning, abnormal oligodendrocytes and behavioural inflexibility. Nature Communications, 2019, 10, 3455.	5.8	56
79	The Relationship Between Common Variant Schizophrenia Liability and Number of Offspring in the UK Biobank: Response to Lawn et al American Journal of Psychiatry, 2019, 176, 574-575.	4.0	5
80	Association of Genetic Liability to Psychotic Experiences With Neuropsychotic Disorders and Traits. JAMA Psychiatry, 2019, 76, 1256.	6.0	112
81	Psychiatric disorders in children with 16p11.2 deletion and duplication. Translational Psychiatry, 2019, 9, 8.	2.4	93
82	GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores. American Journal of Psychiatry, 2019, 176, 651-660.	4.0	186
83	Genotype–phenotype associations in children with copy number variants associated with high neuropsychiatric risk in the UK (IMAGINE-ID): a case-control cohort study. Lancet Psychiatry,the, 2019, 6, 493-505.	3.7	87
84	Novel Insight Into the Etiology of Autism Spectrum Disorder Gained by Integrating Expression Data With Genome-wide Association Statistics. Biological Psychiatry, 2019, 86, 265-273.	0.7	65
85	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	9.4	1,191
86	Gene expression imputation across multiple brain regions provides insights into schizophrenia risk. Nature Genetics, 2019, 51, 659-674.	9.4	154
87	Epilepsy and seizures in young people with 22q11.2 deletion syndrome: Prevalence and links with other neurodevelopmental disorders. Epilepsia, 2019, 60, 818-829.	2.6	37
88	Pharmacogenomic Variants and Drug Interactions Identified Through the Genetic Analysis of Clozapine Metabolism. American Journal of Psychiatry, 2019, 176, 477-486.	4.0	54
89	Dynamic expression of genes associated with schizophrenia and bipolar disorder across development. Translational Psychiatry, 2019, 9, 74.	2.4	37
90	Cognitive performance and functional outcomes of carriers of pathogenic copy number variants: analysis of the UK Biobank. British Journal of Psychiatry, 2019, 214, 297-304.	1.7	102

#	Article	IF	CITATIONS
91	Genetic risk for schizophrenia and developmental delay is associated with shape and microstructure of midline white-matter structures. Translational Psychiatry, 2019, 9, 102.	2.4	20
92	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
93	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	13.5	935
94	Reciprocal White Matter Changes Associated With Copy Number Variation at 15q11.2 BP1-BP2: A Diffusion Tensor Imaging Study. Biological Psychiatry, 2019, 85, 563-572.	0.7	29
95	Convergent Evidence That ZNF804A Is a Regulator of Pre-messenger RNA Processing and Gene Expression. Schizophrenia Bulletin, 2019, 45, 1267-1278.	2.3	22
96	Targeted Sequencing of 10,198 Samples Confirms Abnormalities in Neuronal Activity and Implicates Voltage-Gated Sodium Channels in Schizophrenia Pathogenesis. Biological Psychiatry, 2019, 85, 554-562.	0.7	40
97	The emergence of psychotic experiences in the early adolescence of 22q11.2 Deletion Syndrome. Journal of Psychiatric Research, 2019, 109, 10-17.	1.5	21
98	A genome-wide association study in individuals of African ancestry reveals the importance of the Duffy-null genotype in the assessment of clozapine-related neutropenia. Molecular Psychiatry, 2019, 24, 328-337.	4.1	42
99	Medical consequences of pathogenic CNVs in adults: analysis of the UK Biobank. Journal of Medical Genetics, 2019, 56, 131-138.	1.5	121
100	Genetic Variation in the Psychiatric Risk Gene CACNA1C Modulates Reversal Learning Across Species. Schizophrenia Bulletin, 2019, 45, 1024-1032.	2.3	21
101	Associations between schizophrenia genetic risk, anxiety disorders and manic/hypomanic episode in a longitudinal population cohort study. British Journal of Psychiatry, 2019, 214, 96-102.	1.7	14
102	Polygenic risk for schizophrenia and season of birth within the UK Biobank cohort. Psychological Medicine, 2019, 49, 2499-2504.	2.7	23
103	Structural and Functional Neuroimaging of Polygenic Risk for Schizophrenia: A Recall-by-Genotype–Based Approach. Schizophrenia Bulletin, 2019, 45, 405-414.	2.3	35
104	Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nature Genetics, 2018, 50, 381-389.	9.4	1,332
105	A dataâ€driven investigation of relationships between bipolar psychotic symptoms and schizophrenia genomeâ€wide significant genetic loci. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 468-475.	1.1	9
106	Association of copy number variation across the genome with neuropsychiatric traits in the general population. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 489-502.	1.1	26
107	Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nature Communications, 2018, 9, 711.	5.8	54
108	Developmental coordination disorder, psychopathology and IQ in 22q11.2 deletion syndrome. British Journal of Psychiatry, 2018, 212, 27-33.	1.7	40

#	Article	IF	CITATIONS
109	Effects of MiRâ€137 genetic risk score on brain volume and cortical measures in patients with schizophrenia and controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 369-376.	1.1	10
110	Genetically predicted complement component 4A expression: effects on memory function and middle temporal lobe activation. Psychological Medicine, 2018, 48, 1608-1615.	2.7	29
111	Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018, 50, 668-681.	9.4	2,224
112	Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biology, 2018, 19, 194.	3.8	126
113	Effects of pathogenic CNVs on physical traits in participants of the UK Biobank. BMC Genomics, 2018, 19, 867.	1.2	61
114	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	6.0	516
115	Variance of IQ is partially dependent on deletion type among 1,427 22q11.2 deletion syndrome subjects. American Journal of Medical Genetics, Part A, 2018, 176, 2172-2181.	0.7	33
116	Examining cognition across the bipolar/schizophrenia diagnostic spectrum. Journal of Psychiatry and Neuroscience, 2018, 43, 245-253.	1.4	49
117	Genetic identification of brain cell types underlying schizophrenia. Nature Genetics, 2018, 50, 825-833.	9.4	497
118	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	6.0	1,085
119	Premature mortality among people with severe mental illness — New evidence from linked primary care data. Schizophrenia Research, 2018, 199, 154-162.	1.1	125
120	Investigating the genetic architecture of general and specific psychopathology in adolescence. Translational Psychiatry, 2018, 8, 145.	2.4	49
121	PEMapper and PECaller provide a simplified approach to whole-genome sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1923-E1932.	3.3	31
122	Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia. Translational Psychiatry, 2017, 7, e1155-e1155.	2.4	150
123	Genetic effects influencing risk for major depressive disorder in China and Europe. Translational Psychiatry, 2017, 7, e1074-e1074.	2.4	64
124	Schizophrenia copy number variants and associative learning. Molecular Psychiatry, 2017, 22, 178-182.	4.1	15
125	Schizophrenia and the neurodevelopmental continuum:evidence from genomics. World Psychiatry, 2017, 16, 227-235.	4.8	221
126	Childhood cognitive development in 22q11.2 deletion syndrome: Case–control study. British Journal of Psychiatry, 2017, 211, 223-230.	1.7	33

#	Article	IF	CITATIONS
127	Mutation intolerant genes and targets of FMRP are enriched for nonsynonymous alleles in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2017, 174, 724-731.	1.1	19
128	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
129	Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome. American Journal of Psychiatry, 2017, 174, 1054-1063.	4.0	77
130	The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nature Genetics, 2017, 49, 1167-1173.	9.4	200
131	Cognitive Performance Among Carriers of Pathogenic Copy Number Variants: Analysis of 152,000 UK Biobank Subjects. Biological Psychiatry, 2017, 82, 103-110.	0.7	168
132	The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biological Psychiatry, 2017, 81, 9-20.	0.7	416
133	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	9.4	838
134	Genome-wide common and rare variant analysis provides novel insights into clozapine-associated neutropenia. Molecular Psychiatry, 2017, 22, 1502-1508.	4.1	75
135	Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. Psychological Medicine, 2016, 46, 759-770.	2.7	176
136	What can we learn from the high rates of schizophrenia in people with 22q11.2 deletion syndrome?. World Psychiatry, 2016, 15, 23-25.	4.8	15
137	Associations between polygenic risk for schizophrenia and brain function during probabilistic learning in healthy individuals. Human Brain Mapping, 2016, 37, 491-500.	1.9	27
138	Analysis of Intellectual Disability Copy Number Variants for Association With Schizophrenia. JAMA Psychiatry, 2016, 73, 963.	6.0	118
139	Reasons for discontinuing clozapine: A cohort study of patients commencing treatment. Schizophrenia Research, 2016, 174, 113-119.	1.1	100
140	The implications of the shared genetics of psychiatric disorders. Nature Medicine, 2016, 22, 1214-1219.	15.2	135
141	Mutation screening of SCN2A in schizophrenia and identification of a novel loss-of-function mutation. Psychiatric Genetics, 2016, 26, 60-65.	0.6	45
142	Copy number variation in bipolar disorder. Molecular Psychiatry, 2016, 21, 89-93.	4.1	147
143	Schizophrenia. Lancet, The, 2016, 388, 86-97.	6.3	1,328
144	Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis. Lancet Psychiatry,the, 2016, 3, 77-83.	3.7	143

#	Article	IF	CITATIONS
145	Evidence of Common Genetic Overlap Between Schizophrenia and Cognition. Schizophrenia Bulletin, 2016, 42, 832-842.	2.3	102
146	Rare loss-of-function variants in SETD1A are associated with schizophrenia and developmental disorders. Nature Neuroscience, 2016, 19, 571-577.	7.1	388
147	Phenotypic Manifestation of Genetic Risk for Schizophrenia During Adolescence in the General Population. JAMA Psychiatry, 2016, 73, 221.	6.0	197
148	Exome arrays capture polygenic rare variant contributions to schizophrenia. Human Molecular Genetics, 2016, 25, 1001-1007.	1.4	54
149	Psychiatric gene discoveries shape evidence on ADHD's biology. Molecular Psychiatry, 2016, 21, 1202-1207.	4.1	55
150	Defining the Effect of the 16p11.2 Duplication on Cognition, Behavior, and Medical Comorbidities. JAMA Psychiatry, 2016, 73, 20.	6.0	195
151	Common alleles contribute to schizophrenia in CNV carriers. Molecular Psychiatry, 2016, 21, 1085-1089.	4.1	95
152	Familiality and SNP heritability of age at onset and episodicity in major depressive disorder. Psychological Medicine, 2015, 45, 2215-2225.	2.7	21
153	The clinical presentation of attention deficitâ€hyperactivity disorder (ADHD) in children with 22q11.2 deletion syndrome. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 730-738.	1.1	35
154	No Evidence for Enrichment in Schizophrenia for Common Allelic Associations at Imprinted Loci. PLoS ONE, 2015, 10, e0144172.	1.1	4
155	Evaluating historical candidate genes for schizophrenia. Molecular Psychiatry, 2015, 20, 555-562.	4.1	281
156	Novel Findings from CNVs Implicate Inhibitory and Excitatory Signaling Complexes in Schizophrenia. Neuron, 2015, 86, 1203-1214.	3.8	173
157	A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. BMC Medicine, 2015, 13, 86.	2.3	56
158	Genetic overlap between Alzheimer's disease and Parkinson's disease at the MAPT locus. Molecular Psychiatry, 2015, 20, 1588-1595.	4.1	133
159	Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia. Translational Psychiatry, 2015, 5, e607-e607.	2.4	35
160	A national population-based e-cohort of people with psychosis (PsyCymru) linking prospectively ascertained phenotypically rich and genetic data to routinely collected records: Overview, recruitment and linkage. Schizophrenia Research, 2015, 166, 131-136.	1.1	14
161	Shared Genetic Influences Between Attention-Deficit/Hyperactivity Disorder (ADHD) Traits in Children and Clinical ADHD. Journal of the American Academy of Child and Adolescent Psychiatry, 2015, 54, 322-327.	0.3	75
162	Psychiatric classification – a developmental perspective. British Journal of Psychiatry, 2015, 207, 281-282.	1.7	8

#	Article	IF	CITATIONS
163	The UK10K project identifies rare variants in health and disease. Nature, 2015, 526, 82-90.	13.7	1,014
164	Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Progress in Neurobiology, 2015, 134, 36-54.	2.8	187
165	Schizophrenia genetics: emerging themes for a complex disorder. Molecular Psychiatry, 2015, 20, 72-76.	4.1	81
166	Genetics of schizophrenia. Current Opinion in Behavioral Sciences, 2015, 2, 8-14.	2.0	44
167	Genetic Risk for Schizophrenia: Convergence on Synaptic Pathways Involved in Plasticity. Biological Psychiatry, 2015, 77, 52-58.	0.7	256
168	Identifying Gene-Environment Interactions in Schizophrenia: Contemporary Challenges for Integrated, Large-scale Investigations. Schizophrenia Bulletin, 2014, 40, 729-736.	2.3	229
169	A Population-Based Study of Genetic Variation and Psychotic Experiences in Adolescents. Schizophrenia Bulletin, 2014, 40, 1254-1262.	2.3	74
170	Analysis of copy number variations at 15 schizophrenia-associated loci. British Journal of Psychiatry, 2014, 204, 108-114.	1.7	380
171	The Research Domain Criteria: moving the goalposts to change the game. British Journal of Psychiatry, 2014, 204, 171-173.	1.7	13
172	CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Human Molecular Genetics, 2014, 23, 1669-1676.	1.4	82
173	Psychiatric Disorders From Childhood to Adulthood in 22q11.2 Deletion Syndrome: Results From the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. American Journal of Psychiatry, 2014, 171, 627-639.	4.0	645
174	De novo CNVs in bipolar affective disorder and schizophrenia. Human Molecular Genetics, 2014, 23, 6677-6683.	1.4	70
175	Common variant at 16p11.2 conferring risk of psychosis. Molecular Psychiatry, 2014, 19, 108-114.	4.1	85
176	The Penetrance of Copy Number Variations for Schizophrenia and Developmental Delay. Biological Psychiatry, 2014, 75, 378-385.	0.7	321
177	Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder. Schizophrenia Bulletin, 2014, 40, 504-515.	2.3	204
178	Evidence that duplications of 22q11.2 protect against schizophrenia. Molecular Psychiatry, 2014, 19, 37-40.	4.1	163
179	De novo mutations in schizophrenia implicate synaptic networks. Nature, 2014, 506, 179-184.	13.7	1,510
180	New Approaches to Psychiatric Diagnostic Classification. Neuron, 2014, 84, 564-571.	3.8	127

#	Article	IF	CITATIONS
181	Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 2014, 515, 209-215.	13.7	2,254
182	Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Medicine, 2014, 6, 29.	3.6	189
183	Copy number variation in schizophrenia in Sweden. Molecular Psychiatry, 2014, 19, 762-773.	4.1	257
184	Further evidence for high rates of schizophrenia in 22q11.2 deletion syndrome. Schizophrenia Research, 2014, 153, 231-236.	1.1	83
185	Relationship between obesity and the risk of clinically significant depression: Mendelian randomisation study. British Journal of Psychiatry, 2014, 205, 24-28.	1.7	62
186	Psychopathology and cognition in children with 22q11.2 deletion syndrome. British Journal of Psychiatry, 2014, 204, 46-54.	1.7	83
187	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	9.4	3,741
188	Schizoaffective Disorder in the DSM-5. Schizophrenia Research, 2013, 150, 21-25.	1.1	106
189	Definition and description of schizophrenia in the DSM-5. Schizophrenia Research, 2013, 150, 3-10.	1.1	491
190	Implication of a Rare Deletion at Distal 16p11.2 in Schizophrenia. JAMA Psychiatry, 2013, 70, 253.	6.0	69
191	Schizophrenia twoâ€hit hypothesis in veloâ€cardio facial syndrome. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 177-182.	1.1	21
192	The internet is parents' main source of information about psychiatric manifestations of 22q11.2 deletion syndrome (22q11.2DS). European Journal of Medical Genetics, 2013, 56, 439-441.	0.7	23
193	Variation in tau isoform expression in different brain regions and disease states. Neurobiology of Aging, 2013, 34, 1922.e7-1922.e12.	1.5	49
194	Logic and justification for dimensional assessment of symptoms and related clinical phenomena in psychosis: Relevance to DSM-5. Schizophrenia Research, 2013, 150, 15-20.	1.1	165
195	Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC. Molecular Psychiatry, 2013, 18, 708-712.	4.1	216
196	Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. British Journal of Psychiatry, 2013, 203, 107-111.	1.7	93
197	Schizophrenia and Bipolar Disorder. , 2013, , 1051-1058.		0
198	A Population-Based Study of Shared Genetic Variation Between Premorbid IQ and Psychosis Among Male Twin Pairs and Sibling Pairs From Sweden. Archives of General Psychiatry, 2012, 69, 460.	13.8	51

#	Article	IF	CITATIONS
199	De Novo Mutation in Schizophrenia. Schizophrenia Bulletin, 2012, 38, 377-381.	2.3	46
200	Genome-Wide Analysis of Copy Number Variants in Attention Deficit Hyperactivity Disorder: The Role of Rare Variants and Duplications at 15q13.3. American Journal of Psychiatry, 2012, 169, 195-204.	4.0	242
201	Intellectual disability and major psychiatric disorders: A continuum of neurodevelopmental causality. British Journal of Psychiatry, 2012, 200, 268-269.	1.7	73
202	The Role of Variation at AβPP, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 28, 377-387.	1.2	53
203	The Origins of Schizophrenia Edited By Alan S. Brown & Paul H. Patterson. Columbia University Press. 2011. £55.00 (hb). 448 pp. ISBN: 9780231151245. British Journal of Psychiatry, 2012, 201, 162-162.	1.7	1
204	Implications of Genetic Findings for Understanding Schizophrenia. Schizophrenia Bulletin, 2012, 38, 904-907.	2.3	48
205	De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Molecular Psychiatry, 2012, 17, 142-153.	4.1	775
206	Discovery and Statistical Genotyping of Copy-Number Variation from Whole-Exome Sequencing Depth. American Journal of Human Genetics, 2012, 91, 597-607.	2.6	513
207	Recent genomic advances in schizophrenia. Clinical Genetics, 2012, 81, 103-109.	1.0	86
208	Depressive disorder moderates the effect of the FTO gene on body mass index. Molecular Psychiatry, 2012, 17, 604-611.	4.1	72
209	DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder. PLoS ONE, 2012, 7, e35424.	1.1	30
210	Is there a schizophrenia to diagnose?. World Psychiatry, 2011, 10, 34-35.	4.8	9
211	Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Human Molecular Genetics, 2011, 20, 387-391.	1.4	233
212	Genome-Wide Association Study of Schizophrenia in a Japanese Population. Biological Psychiatry, 2011, 69, 472-478.	0.7	152
213	An Examination of Single Nucleotide Polymorphism Selection Prioritization Strategies for Tests of Gene–Gene Interaction. Biological Psychiatry, 2011, 70, 198-203.	0.7	10
214	De Novo Rates and Selection of Schizophrenia-Associated Copy Number Variants. Biological Psychiatry, 2011, 70, 1109-1114.	0.7	85
215	A Multi-Center Study of ACE and the Risk of Late-Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 587-597.	1.2	33
216	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	9.4	1,708

#	Article	IF	CITATIONS
217	Meta-analysis of genome-wide association data of bipolar disorder and major depressive disorder. Molecular Psychiatry, 2011, 16, 2-4.	4.1	150
218	Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Molecular Psychiatry, 2011, 16, 429-441.	4.1	250
219	A family-based study of common polygenic variation and risk of schizophrenia. Molecular Psychiatry, 2011, 16, 887-888.	4.1	27
220	Neurodevelopmental hypothesis of schizophrenia. British Journal of Psychiatry, 2011, 198, 173-175.	1.7	417
221	Mutation screening of the 3q29 microdeletion syndrome candidate genes <i>DLG1</i> and <i>PAK2</i> in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 844-849.	1.1	28
222	Phenotype evaluation and genomewide linkage study of clinical variables in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 929-940.	1.1	14
223	Clinical and cognitive characteristics of children with attention-deficit hyperactivity disorder, with and without copy number variants. British Journal of Psychiatry, 2011, 199, 398-403.	1.7	28
224	Rare Copy Number Variants <subtitle>A Point of Rarity in Genetic Risk for Bipolar Disorder and Schizophrenia</subtitle> <alt-title>Rare Copy Number Variants</alt-title> . Archives of General Psychiatry, 2010, 67, 318.	13.8	173
225	Adolescent clinical outcomes for young people with attention-deficit hyperactivity disorder. British Journal of Psychiatry, 2010, 196, 235-240.	1.7	141
226	Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. Molecular Psychiatry, 2010, 15, 146-153.	4.1	111
227	The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Molecular Psychiatry, 2010, 15, 1016-1022.	4.1	458
228	Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha. Molecular Psychiatry, 2010, 15, 1101-1111.	4.1	32
229	Genome-wide Analysis of Genetic Loci Associated With Alzheimer Disease. JAMA - Journal of the American Medical Association, 2010, 303, 1832.	3.8	1,064
230	POMD10 Do psychiatric disorders form part of the myoclonus-dystonia syndrome phenotype? A systematic review of published literature. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, e59-e60.	0.9	0
231	Suggestion of Roles for Both Common and Rare Risk Variants in Genome-wide Studies of Schizophrenia. Archives of General Psychiatry, 2010, 67, 667.	13.8	115
232	The Kraepelinian dichotomy – going, going … but still not gone. British Journal of Psychiatry, 2010, 196, 92-95.	1.7	498
233	Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet, The, 2010, 376, 1401-1408.	6.3	485
234	Molecular Genetics and the Kraepelinian Dichotomy: One Disorder, Two Disorders, or Do We Need to Start Thinking Afresh?. Psychiatric Annals, 2010, 40, 88-91.	0.1	8

#	Article	IF	CITATIONS
235	Genes of the serotonergic and dopaminergic pathways and their interaction affect the expression of Behavioural and Psychological Symptoms in Dementia (BPSD) Nature Precedings, 2009, , .	0.1	0
236	New findings from genetic association studies of schizophrenia. Journal of Human Genetics, 2009, 54, 9-14.	1.1	29
237	Whole Genome Association Study in a Homogenous Population in Shandong Peninsula of China Reveals JARID2 as a Susceptibility Gene for Schizophrenia. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-7.	3.0	32
238	Neurexin 1 (NRXN1) Deletions in Schizophrenia. Schizophrenia Bulletin, 2009, 35, 851-854.	2.3	211
239	Support for the involvement of large copy number variants in the pathogenesis of schizophrenia. Human Molecular Genetics, 2009, 18, 1497-1503.	1.4	378
240	Depression Case Control (DeCC) Study fails to support involvement of the muscarinic acetylcholine receptor M2 (CHRM2) gene in recurrent major depressive disorder. Human Molecular Genetics, 2009, 18, 1504-1509.	1.4	56
241	Schizophrenia genetics: new insights from new approaches. British Medical Bulletin, 2009, 91, 61-74.	2.7	62
242	Case-control association study of 65 candidate genes revealed a possible association of a SNP of HTR5A to be a factor susceptible to bipolar disease in Bulgarian population. Journal of Affective Disorders, 2009, 117, 87-97.	2.0	37
243	An association study of common variation at the <i>MAPT</i> locus with lateâ€onset Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 1152-1155.	1.1	31
244	Genetics of psychosis; insights from views across the genome. Human Genetics, 2009, 126, 3-12.	1.8	197
245	Genetics and the brain: many pathways to enlightenment. Human Genetics, 2009, 126, 1-2.	1.8	5
246	Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Molecular Psychiatry, 2009, 14, 252-260.	4.1	330
247	Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1088-1093.	9.4	2,697
248	Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics, 2009, 41, 1223-1227.	9.4	646
249	Moodâ€incongruent psychosis in bipolar disorder: conditional linkage analysis shows genomeâ€wide suggestive linkage at 1q32.3, 7p13 and 20q13.31. Bipolar Disorders, 2009, 11, 610-620.	1.1	23
250	Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2. Molecular Psychiatry, 2009, 14, 30-36.	4.1	66
251	Gene Ontology Analysis of GWA Study Data Sets Provides Insights into the Biology of Bipolar Disorder. American Journal of Human Genetics, 2009, 85, 13-24.	2.6	367
252	Schizophrenia genetics: advancing on two fronts. Current Opinion in Genetics and Development, 2009, 19, 266-270.	1.5	67

#	Article	IF	CITATIONS
253	Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer's disease. Neuroscience Letters, 2009, 461, 54-59.	1.0	30
254	Diagnosis of functional psychoses: time to face the future. Lancet, The, 2009, 373, 190-191.	6.3	33
255	Psychosis Genetics: Modeling the Relationship Between Schizophrenia, Bipolar Disorder, and Mixed (or "Schizoaffective") Psychoses. Schizophrenia Bulletin, 2009, 35, 482-490.	2.3	191
256	A genome-wide association study for late-onset Alzheimer's disease using DNA pooling. BMC Medical Genomics, 2008, 1, 44.	0.7	162
257	Genome-wide association studies in psychiatry: lessons from early studies of non-psychiatric and psychiatric phenotypes. Molecular Psychiatry, 2008, 13, 649-653.	4.1	61
258	Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 2008, 40, 1053-1055.	9.4	977
259	Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genetics, 2008, 40, 1056-1058.	9.4	1,102
260	Phenotypic variations on the theme of CNVs. Nature Genetics, 2008, 40, 1392-1393.	9.4	56
261	Genetics of schizophrenia. Psychiatry (Abingdon, England), 2008, 7, 415-420.	0.2	1
262	Genome-Wide Association Identifies a Common Variant in the Reelin Gene That Increases the Risk of Schizophrenia Only in Women. PLoS Genetics, 2008, 4, e28.	1.5	302
263	Strong evidence that GNB1L is associated with schizophrenia. Human Molecular Genetics, 2008, 17, 555-566.	1.4	64
264	Cis- and trans- loci influence expression of the schizophrenia susceptibility gene DTNBP1. Human Molecular Genetics, 2008, 17, 1169-1174.	1.4	18
265	Schizophrenia: complex genetics, not fairy tales. Psychological Medicine, 2008, 38, 1697-1699.	2.7	11
266	Medical disorders in people with recurrent depression. British Journal of Psychiatry, 2008, 192, 351-355.	1.7	109
267	Autism-associated SNPs in the clock genes npas2, per1 and the homeobox gene en2 alter DNA sequences that show characteristics of microRNA genes Nature Precedings, 2008, , .	0.1	1
268	Is COMT a Susceptibility Gene for Schizophrenia?. Schizophrenia Bulletin, 2007, 33, 635-641.	2.3	157
269	Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Human Molecular Genetics, 2007, 17, 458-465.	1.4	344
270	Phenotypic and genetic complexity of psychosis. British Journal of Psychiatry, 2007, 190, 200-203.	1.7	95

#	Article	IF	CITATIONS
271	The Genetic Deconstruction of Psychosis. Schizophrenia Bulletin, 2007, 33, 905-911.	2.3	242
272	Symptom dimensions and the Kraepelinian dichotomy. British Journal of Psychiatry, 2007, 190, 361-361.	1.7	8
273	Association studies of 23 positional/functional candidate genes on chromosome 10 in late-onset Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 762-770.	1.1	42
274	Endophenotypes in psychiatric genetics. Molecular Psychiatry, 2007, 12, 886-890.	4.1	157
275	Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. World Psychiatry, 2007, 6, 84-91.	4.8	117
276	Genes and Behavior: Nature–Nurture Interplay Explained By Michael Rutter. Oxford: Blackwell. 2006. 272pp. £14.99 (pb). ISBN 1405110619. British Journal of Psychiatry, 2006, 189, 192-193.	1.7	6
277	Variation at the DAOA/G30 Locus Influences Susceptibility to Major Mood Episodes but Not Psychosis in Schizophrenia and Bipolar Disorder. Archives of General Psychiatry, 2006, 63, 366.	13.8	138
278	The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Molecular Psychiatry, 2006, 11, 446-458.	4.1	203
279	Evidence that a DISC1 frame-shift deletion associated with psychosis in a single family may not be a pathogenic mutation. Molecular Psychiatry, 2006, 11, 798-799.	4.1	30
280	Linkage disequilibrium structure of KIAA0319 and DCDC2, two candidate susceptibility genes for developmental dyslexia. Molecular Psychiatry, 2006, 11, 1061-1061.	4.1	13
281	Four Components Describe Behavioral Symptoms in 1,120 Individuals with Late-Onset Alzheimer's Disease. Journal of the American Geriatrics Society, 2006, 54, 1348-1354.	1.3	126
282	Convergent evidence that oligodendrocyte lineage transcription factor 2 (OLIG2) and interacting genes influence susceptibility to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12469-12474.	3.3	116
283	Genes for schizophrenia and beyond. , 2006, , 119-126.		Ο
284	Operation of the Schizophrenia Susceptibility Gene, Neuregulin 1, Across Traditional Diagnostic Boundaries to Increase Risk for Bipolar Disorder. Archives of General Psychiatry, 2005, 62, 642.	13.8	232
285	Identification of a potential Bipolar risk haplotype in the gene encoding the winged-helix transcription factor RFX4. Molecular Psychiatry, 2005, 10, 920-927.	4.1	24
286	Schizophrenia: genes at last?. Trends in Genetics, 2005, 21, 518-525.	2.9	278
287	Linkage disequilibrium mapping of bipolar affective disorder at 12q23-q24 provides evidence for association atCUX2 andFLJ32356. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 132B, 38-45.	1.1	24
288	Is the Dysbindin Gene (DTNBP1) a Susceptibility Gene for Schizophrenia?. Schizophrenia Bulletin, 2005, 31, 800-805.	2.3	102

#	Article	IF	CITATIONS
289	No Association Between Schizophrenia and Polymorphisms in COMT in Two Large Samples. American Journal of Psychiatry, 2005, 162, 1736-1738.	4.0	75
290	Genomewide Linkage Scan in Schizoaffective Disorder. Archives of General Psychiatry, 2005, 62, 1081.	13.8	177
291	The beginning of the end for the Kraepelinian dichotomy. British Journal of Psychiatry, 2005, 186, 364-366.	1.7	330
292	The genetics of schizophrenia and bipolar disorder: dissecting psychosis. Journal of Medical Genetics, 2005, 42, 193-204.	1.5	479
293	Genes for Schizophrenia and Bipolar Disorder? Implications for Psychiatric Nosology. Schizophrenia Bulletin, 2005, 32, 9-16.	2.3	435
294	Bipolar disorder and polymorphisms in the dysbindin gene (DTNBP1). Biological Psychiatry, 2005, 57, 696-701.	0.7	120
295	Brain Anatomy in Adults With Velocardiofacial Syndrome With and WithoutSchizophrenia. Archives of General Psychiatry, 2004, 61, 1085.	13.8	140
296	Genetics: The implications for forensic psychiatry. Journal of Forensic Psychiatry and Psychology, 2004, 15, 696-704.	0.6	1
297	Identification in 2 Independent Samples of a Novel Schizophrenia RiskHaplotype of the Dystrobrevin Binding Protein Gene (DTNBP1). Archives of General Psychiatry, 2004, 61, 336.	13.8	175
298	The molecular genetics of schizophrenia: new findings promise new insights. Molecular Psychiatry, 2004, 9, 14-27.	4.1	293
299	Genetic abnormalities of chromosome 22 and the development of psychosis. Current Psychiatry Reports, 2004, 6, 176-182.	2.1	34
300	DNA pooling as a tool for largeâ€scale association studies in complex traits. Annals of Medicine, 2004, 36, 146-152.	1.5	68
301	Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biological Psychiatry, 2004, 55, 971-975.	0.7	149
302	Cis-acting variation in the expression of a high proportion of genes in human brain. Human Genetics, 2003, 113, 149-153.	1.8	213
303	Association between PRODH and schizophrenia is not confirmed. Molecular Psychiatry, 2003, 8, 644-645.	4.1	52
304	Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Molecular Psychiatry, 2003, 8, 485-487.	4.1	226
305	Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet, The, 2003, 361, 417-419.	6.3	553
306	Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia. American Journal of Human Genetics, 2003, 73, 34-48.	2.6	1,072

#	Article	IF	CITATIONS
307	A Systematic Genomewide Linkage Study in 353 Sib Pairs with Schizophrenia. American Journal of Human Genetics, 2003, 73, 1355-1367.	2.6	115
308	The future of psychiatric genetics. Annals of Medicine, 2003, 35, 122-134.	1.5	11
309	Chromosome 22q11 deletions, velo-cardio-facial syndrome and early-onset psychosis. British Journal of Psychiatry, 2003, 183, 409-413.	1.7	67
310	Evidence for familial cosegregation of major affective disorder and genetic markers flanking the gene for Darier's disease. Molecular Psychiatry, 2002, 7, 424-427.	4.1	67
311	No association between apolipoprotein E polymorphisms and general cognitive ability in children. Neuroscience Letters, 2001, 299, 97-100.	1.0	63
312	Velo-cardio-facial syndrome: a model for understanding the genetics and pathogenesis of schizophrenia. British Journal of Psychiatry, 2001, 179, 397-402.	1.7	127
313	Substantial linkage disequilibrium across the insulin-degrading enzyme locus but no association with late-onset Alzheimer's disease. Human Genetics, 2001, 109, 646-652.	1.8	93
314	CUX2, a potential regulator of NCAM expression: Genomic characterization and analysis as a positional candidate susceptibility gene for bipolar disorder. American Journal of Medical Genetics Part A, 2001, 105, 295-300.	2.4	16
315	A genomewide linkage study of age at onset in schizophrenia. American Journal of Medical Genetics Part A, 2001, 105, 439-445.	2.4	63
316	Examining for association between candidate gene polymorphisms in the dopamine pathway and attention-deficit hyperactivity disorder: A family-based study. American Journal of Medical Genetics Part A, 2001, 105, 464-470.	2.4	112
317	A genome-wide scan of 1842 DNA markers for allelic associations with general cognitive ability: a five-stage design using DNA pooling and extreme selected groups. Behavior Genetics, 2001, 31, 497-509.	1.4	80
318	Exclusion of the Darier's disease gene, ATP2A2, as a common susceptibility gene for bipolar disorder. Molecular Psychiatry, 2001, 6, 92-97.	4.1	49
319	Psychiatric genetics: back to the future. Molecular Psychiatry, 2000, 5, 22-31.	4.1	73
320	Cheap, accurate and rapid allele frequency estimation of single nucleotide polymorphisms by primer extension and DHPLC in DNA pools. Human Genetics, 2000, 107, 488-493.	1.8	162
321	Molecular genetic studies of schizophrenia. Brain Research Reviews, 2000, 31, 179-186. Multicenter Linkage Study of Schizophrenia Candidate Regions on Chromosomes 5q, 6q, 10p, and 13q:	9.1	24
322	Schizophrenia Linkage Collaborative Group III **The Schizophrenia Linkage Collaborative Group III includes all authors, who are listed in the following order: study coordinators (Levinson, Holmans), principal investigators of each research group (Straub, Owen, Wildenauer, Gejman, Pulver, Laurent), and additional authors from each group, with groups listed according to the number of pedigrees	2.6	199
323	contributed. Partic. American Journal of Human Genetics, 2000, 67, 652-663. Pooled genotyping of microsatellite markers in parent-offspring trios. Genome Research, 2000, 10, 105-15.	2.4	38
324	DNA Pooling Identifies QTLs on Chromosome 4 for General Cognitive Ability in Children. Human	1.4	91

²⁴ Molecular Genetics, 1999, 8, 915-922.

#	Article	IF	CITATIONS
325	ATP2A2 Mutations in Darier's Disease and Their Relationship to Neuropsychiatric Phenotypes. Human Molecular Genetics, 1999, 8, 1631-1636.	1.4	132
326	A Two-Stage Genome Scan for Schizophrenia Susceptibility Genes in 196 Affected Sibling Pairs. Human Molecular Genetics, 1999, 8, 1729-1739.	1.4	136
327	High Rates of Schizophrenia in Adults With Velo-Cardio-Facial Syndrome. Archives of General Psychiatry, 1999, 56, 940.	13.8	928
328	Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer disease. Nature Genetics, 1999, 21, 71-72.	9.4	260
329	Candidate-Gene Association Studies of Schizophrenia. American Journal of Human Genetics, 1999, 65, 587-592.	2.6	118
330	Chapter 2.1.5 DNA pooling in allelic association studies. Handbook of Behavioral Neuroscience, 1999, , 122-131.	0.0	0
331	A meta-analysis and transmission disequilibrium study of association between the dopamine D3 receptor gene and schizophrenia. Molecular Psychiatry, 1998, 3, 141-149.	4.1	163
332	A Simple Method for Analyzing Microsatellite Allele Image Patterns Generated from DNA Pools and Its Application to Allelic Association Studies. American Journal of Human Genetics, 1998, 62, 1189-1197.	2.6	119
333	Sibling pairs with schizophrenia or schizoaffective disorder: associations of subtypes, symptoms and demographic variables. Psychological Medicine, 1998, 28, 815-823.	2.7	36
334	Genetics of human behaviour. Psychiatric Bulletin, 1998, 22, 518-518.	0.3	0
335	Genetics and psychiatry. British Journal of Psychiatry, 1997, 171, 201-202.	1.7	18
336	Association studies in psychiatric genetics. Molecular Psychiatry, 1997, 2, 270-273.	4.1	103
337	No association between general cognitive ability and the A1 allele of the D2 dopamine receptor gene. Behavior Genetics, 1997, 27, 29-31.	1.4	32
338	The nature and nurture of depression: towards a new synthesis?. International Review of Psychiatry, 1996, 8, 285-287.	1.4	1
339	Molecular Neuropathology. Edited By Gareth W. Roberts and Julia M. Polak. Cambridge: Cambridge University Press. 1995. 189 pp. £24.95 (US\$37.95) British Journal of Psychiatry, 1996, 169, 119-119.	1.7	0
340	Modern molecular genetic approaches to complex traits: implications for psychiatric disorders. Molecular Psychiatry, 1996, 1, 21-6.	4.1	14
341	Clinical features of early onset, familial Alzheimer's disease linked to chromosome 14. American Journal of Medical Genetics Part A, 1995, 60, 44-52.	2.4	9
342	Systematic search for major genes in schizophrenia: Methodological issues and results from chromosome 12. American Journal of Medical Genetics Part A, 1995, 60, 424-433.	2.4	6

#	Article	IF	CITATIONS
343	No evidence for linkage between the X-chromosome marker DXS7 and schizophrenia. American Journal of Medical Genetics Part A, 1995, 60, 461-464.	2.4	15
344	Allelic associations between 100 DNA markers and high versus low IQ. Intelligence, 1995, 21, 31-48.	1.6	80
345	Darier's disease cosegregating with affective disorder. British Journal of Psychiatry, 1994, 165, 272-272.	1.7	16
346	The genetic basis of complex human behaviors. Science, 1994, 264, 1733-1739.	6.0	1,031
347	Imprinting and Anticipation. British Journal of Psychiatry, 1994, 164, 619-624.	1.7	94
348	The Strength of the Genetic Effect. British Journal of Psychiatry, 1994, 164, 593-599.	1.7	217
349	LOOKING FOR GENES IN SCHIZOPHRENIA. Clinical Neuropharmacology, 1992, 15, 222A-223A.	0.2	1
350	No association between RFLPs at the porphobilinogen deaminase gene and schizophrenia. Human Genetics, 1992, 90, 131-132.	1.8	13
351	Molecular genetic research into Alzheimer's disease. Psychiatric Bulletin, 1992, 16, 312-312.	0.3	0
352	DNA-and classical genetic markers in schizophrenia. European Archives of Psychiatry and Neurological Sciences, 1991, 240, 197-203.	0.9	12
353	A polymorphic microsatellite repeat sequence on chromosome 21 (D21S80). Nucleic Acids Research, 1991, 19, 4574-4574.	6.5	2
354	Localisation of a Susceptibility Locus for Schizophrenia on Chromosome 5. British Journal of Psychiatry, 1990, 157, 123-127.	1.7	16
355	Neurogenetics of Schizophrenia. , 0, , 663-671.		0
356	Autosome search for schizophrenia susceptibility genes in multiply affected families. , 0, .		1
357	Evidence for familial cosegregation of major affective disorder and genetic markers flanking the gene for Darier's disease. , 0, .		1