Berthony Deslouches

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9478197/publications.pdf Version: 2024-02-01

		394421	454955
32	1,639	19	30
papers	citations	h-index	g-index
32	32	32	2163
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget, 2017, 8, 46635-46651.	1.8	273
2	De Novo Generation of Cationic Antimicrobial Peptides: Influence of Length and Tryptophan Substitution on Antimicrobial Activity. Antimicrobial Agents and Chemotherapy, 2005, 49, 316-322.	3.2	227
3	Rational Design of Engineered Cationic Antimicrobial Peptides Consisting Exclusively of Arginine and Tryptophan, and Their Activity against Multidrug-Resistant Pathogens. Antimicrobial Agents and Chemotherapy, 2013, 57, 2511-2521.	3.2	147
4	Activity of the De Novo Engineered Antimicrobial Peptide WLBU2 against Pseudomonas aeruginosa in Human Serum and Whole Blood: Implications for Systemic Applications. Antimicrobial Agents and Chemotherapy, 2005, 49, 3208-3216.	3.2	138
5	Engineered Cationic Antimicrobial Peptides To Overcome Multidrug Resistance by ESKAPE Pathogens. Antimicrobial Agents and Chemotherapy, 2015, 59, 1329-1333.	3.2	108
6	Antimicrobial peptides: new drugs for bad bugs?. Expert Opinion on Biological Therapy, 2014, 14, 11-14.	3.1	106
7	Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37. International Journal of Antimicrobial Agents, 2018, 52, 667-672.	2.5	81
8	Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Science Advances, 2020, 6, eaay6817.	10.3	75
9	De novo-derived cationic antimicrobial peptide activity in a murine model of Pseudomonas aeruginosa bacteraemia. Journal of Antimicrobial Chemotherapy, 2007, 60, 669-672.	3.0	56
10	Engineered cationic antimicrobial peptide (eCAP) prevents <i>Pseudomonas aeruginosa</i> biofilm growth on airway epithelial cells. Journal of Antimicrobial Chemotherapy, 2016, 71, 2200-2207.	3.0	50
11	Engineered Cationic Antimicrobial Peptides (eCAPs) to Combat Multidrug-Resistant Bacteria. Pharmaceutics, 2020, 12, 501.	4.5	38
12	Elimination of Antibiotic Resistant Surgical Implant Biofilms Using an Engineered Cationic Amphipathic Peptide WLBU2. Scientific Reports, 2017, 7, 18098.	3.3	37
13	Antimicrobial Peptides in Mucosal Secretions: The Importance of Local Secretions in Mitigating Infection. Journal of Nutrition, 2005, 135, 1289-1293.	2.9	35
14	Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine. Journal of Medical Microbiology, 2016, 65, 554-565.	1.8	35
15	Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia. Clinical Microbiology and Infection, 2018, 24, 547.e1-547.e8.	6.0	35
16	Memory T Cells Specific for Murine Cytomegalovirus Re-Emerge after Multiple Challenges and Recapitulate Immunity in Various Adoptive Transfer Scenarios. Journal of Immunology, 2015, 194, 1726-1736.	0.8	33
17	Simultaneous Antibiofilm and Antiviral Activities of an Engineered Antimicrobial Peptide during Virus-Bacterium Coinfection. MSphere, 2016, 1, .	2.9	27
18	Selective toxicity of engineered lentivirus lytic peptides in a CF airway cell model. Peptides, 2003, 24, 1099-1107.	2.4	23

#	Article	IF	CITATIONS
19	Novel engineered cationic antimicrobial peptides display broad-spectrum activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. Journal of Medical Microbiology, 2016, 65, 188-194.	1.8	22
20	Elastic behavior of model membranes with antimicrobial peptides depends on lipid specificity and <scp>d</scp> -enantiomers. Soft Matter, 2019, 15, 1860-1868.	2.7	21
21	Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection. MBio, 2019, 10, .	4.1	21
22	Direct antimicrobial activity of cationic amphipathic peptide WLBU2 against <i>Staphylococcus aureus</i> biofilms is enhanced in physiologic buffered saline. Journal of Orthopaedic Research, 2020, 38, 2657-2663.	2.3	12
23	Antimicrobial Peptides: A Potential Therapeutic Option for Surgical Site Infections. Clinics in Surgery, 2017, 2, .	0.8	10
24	Synergistic Biophysical Techniques Reveal Structural Mechanisms of Engineered Cationic Antimicrobial Peptides in Lipid Model Membranes. Chemistry - A European Journal, 2020, 26, 6247-6256.	3.3	9
25	Enhanced biofilm prevention activity of a SPLUNC1-derived antimicrobial peptide against Staphylococcus aureus. PLoS ONE, 2018, 13, e0203621.	2.5	8
26	The use of pre-operative imaging and intraoperative parathyroid hormone level to guide surgical management of tertiary hyperparathyroidism from X-linked hypophosphatemic rickets: a case report. Cases Journal, 2009, 2, 7572.	0.4	6
27	Rational Framework for the Design of Trp- and Arg-Rich Peptide Antibiotics Against Multidrug-Resistant Bacteria. Frontiers in Microbiology, 2022, 13, .	3.5	3
28	Engineered Cationic Antimicrobial Peptides Containing Cholesterol Interacting Motifs to Target Viral Envelopes. Journal of Antivirals & Antiretrovirals, 2017, 09, .	0.1	1
29	Significance of Secondary Structure Determination When Evaluating Rationally Designed Antimicrobial Peptides. Biophysical Journal, 2020, 118, 394a.	0.5	1
30	Mass Balance Study of the Engineered Cationic Antimicrobial Peptide, WLBU2, Following a Single Intravenous Dose of 14C-WLBU2 in Mice. Current Reviews in Clinical and Experimental Pharmacology, 2021, 16, 263-272.	0.8	1
31	Elastic Behavior of Model Membranes with Antimicrobial Peptides Depends on Lipid Specificity and D-Enantiomers. Biophysical Journal, 2019, 116, 84a.	0.5	0
32	Antimicrobial Peptide Mechanisms Revealed with Scattering-Guided Molecular Dynamics Simulation. SSRN Electronic Journal, 0, , .	0.4	0