
Laurel A Raftery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9478049/publications.pdf Version: 2024-02-01

LAUDEL & RAETERY

#	Article	IF	CITATIONS
1	Modeling by disruption and a selectedâ€for partner for the nude locus. EMBO Reports, 2021, 22, e49804.	4.5	4
2	Mob Family Proteins: Regulatory Partners in Hippo and Hippo-Like Intracellular Signaling Pathways. Frontiers in Cell and Developmental Biology, 2020, 8, 161.	3.7	18
3	The repertoire of epithelial morphogenesis on display: Progressive elaboration of Drosophila egg structure. Mechanisms of Development, 2017, 148, 18-39.	1.7	74
4	Bunched and Madm Function Downstream of Tuberous Sclerosis Complex to Regulate the Growth of Intestinal Stem Cells in Drosophila. Stem Cell Reviews and Reports, 2015, 11, 813-825.	5.6	5
5	R-Smad Competition Controls Activin Receptor Output in Drosophila. PLoS ONE, 2012, 7, e36548.	2.5	34
6	Regulation of BMP activity and range in Drosophila wing development. Current Opinion in Cell Biology, 2012, 24, 158-165.	5.4	32
7	BMP signaling in wing development: A critical perspective on quantitative image analysis. FEBS Letters, 2012, 586, 1942-1952.	2.8	10
8	Bunched, the Drosophila homolog of the mammalian tumor suppressor TSC-22, promotes cellular growth. BMC Developmental Biology, 2008, 8, 10.	2.1	20
9	<i>Fluorescence Interferometry</i> . Annals of the New York Academy of Sciences, 2008, 1130, 68-77.	3.8	14
10	Drosophila follicle cells: Morphogenesis in an eggshell. Seminars in Cell and Developmental Biology, 2008, 19, 271-282.	5.0	139
11	Two highly related regulatory subunits of PP2A exert opposite effects on TGF-β/Activin/Nodal signalling. Development (Cambridge), 2008, 135, 2927-2937.	2.5	69
12	Medea SUMOylation restricts the signaling range of the Dpp morphogen in the <i>Drosophila</i> embryo. Genes and Development, 2008, 22, 2578-2590.	5.9	45
13	The <i>Drosophila</i> homolog of human tumor suppressor TSC-22 promotes cellular growth, proliferation, and survival. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5414-5419.	7.1	21
14	Smads In Drosophila â \in " Interpretation Of Graded Signals In Vivo. , 2006, , 55-73.		4
15	Bunched sets a boundary for Notch signaling to pattern anterior eggshell structures during Drosophila oogenesis. Developmental Biology, 2005, 287, 425-437.	2.0	39
16	Gradients and thresholds: BMP response gradients unveiled in Drosophila embryos. Trends in Genetics, 2003, 19, 701-708.	6.7	52
17	A Potential Suppressor of TGF-β Delays Catagen Progression in Hair Follicles. Journal of Investigative Dermatology Symposium Proceedings, 2003, 8, 65-68.	0.8	50
18	Profile of Transforming Growth Factor-Î ² Responses During the Murine Hair Cycle. Journal of Investigative Dermatology, 2003, 121, 969-975.	0.7	33

LAUREL A RAFTERY

#	Article	IF	CITATIONS
19	Stepwise formation of a SMAD activity gradient during dorsal-ventral patterning of the Drosophila embryo. Development (Cambridge), 2003, 130, 5705-5716.	2.5	66
20	Peroxisome Proliferator-activated Receptor Î ³ and Transforming Growth Factor-Î ² Pathways Inhibit Intestinal Epithelial Cell Growth by Regulating Levels of TSC-22. Journal of Biological Chemistry, 2003, 278, 7431-7438.	3.4	66
21	Opposing effects on TSC-22 expression by BMP and receptor tyrosine kinase signals in the developing feather tract. Developmental Dynamics, 2002, 223, 85-95.	1.8	20
22	Integration of epithelial patterning and morphogenesis inDrosophila ovarian follicle cells. Developmental Dynamics, 2000, 218, 80-93.	1.8	157
23	The Zinc Finger Protein Schnurri Acts as a Smad Partner in Mediating the Transcriptional Response to Decapentaplegic. Developmental Biology, 2000, 227, 373-387.	2.0	65
24	The <i>Drosophila</i> Activin receptor Baboon signals through dSmad2 and controls cell proliferation but not patterning during larval development. Genes and Development, 1999, 13, 98-111.	5.9	178
25	Dynamic expression of TSC-22 at sites of epithelial-mesenchymal interactions during mouse development. Mechanisms of Development, 1999, 84, 147-151.	1.7	29
26	TGF-β Family Signal Transduction in Drosophila Development: From Mad to Smads. Developmental Biology, 1999, 210, 251-268.	2.0	304
27	Drosophila Oogenesis: A Model System to Understand TGF-beta/Dpp Directed Cell Morphogenesis. Annals of the New York Academy of Sciences, 1998, 857, 245-247.	3.8	19
28	The Drosophila bunched gene is a homologue of the growth factor stimulated mammalian TSC-22 sequence and is required during oogenesis. Mechanisms of Development, 1997, 65, 197-208.	1.7	53
29	Characterization of Medea, A Gene Required for Maximal Function of the Drosophila BMP Homolog Decapentaplegic. Annals of the New York Academy of Sciences, 1996, 785, 318-320.	3.8	11
30	Drosophila melanogaster larvae detect low doses of UVC radiation as manifested by a writhing response. Archives of Insect Biochemistry and Physiology, 1996, 32, 187-196.	1.5	23
31	Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster Genetics, 1995, 139, 1347-1358.	2.9	579
32	Wing formation in Drosophila melanogaster requires decapentaplegic gene function along the anterior-posterior compartment boundary. Mechanisms of Development, 1990, 33, 69-82.	1.7	168
33	Mutation in the D arm enables a suppressor with a CUA anticodon to read both amber and ochre codons in Escherichia coli. Journal of Molecular Biology, 1986, 190, 513-517.	4.2	15
34	Site-specific mutagenesis of Escherichia coli gltT yields a weak, glutamic acid-inserting ochre suppressor. Journal of Molecular Biology, 1985, 184, 343-345.	4.2	23