Daniel J Ebbole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9477282/publications.pdf

Version: 2024-02-01

201674 289244 6,566 87 27 40 citations h-index g-index papers 90 90 90 5499 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>HAG</i> effector evolution in <i>Pyricularia</i> species and plant cell death suppression by <i>HAG4</i> Molecular Plant-Microbe Interactions, 2022, , .	2.6	O
2	Evolution and Regulation of a Large Effector Family of <i>Pyricularia oryzae</i> Plant-Microbe Interactions, 2021, 34, 255-269.	2.6	3
3	Emergence of a hybrid PKSâ€NRPS secondary metabolite cluster in a clonal population of the rice blast fungus Magnaporthe oryzae. Environmental Microbiology, 2020, 22, 2709-2723.	3.8	6
4	A <i>Magnaporthe </i> Chitinase Interacts with a Rice Jacalin-Related Lectin to Promote Host Colonization. Plant Physiology, 2019, 179, 1416-1430.	4.8	47
5	Magnaporthe oryzae CK2 Accumulates in Nuclei, Nucleoli, at Septal Pores and Forms a Large Ring Structure in Appressoria, and Is Involved in Rice Blast Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 113.	3.9	22
6	Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. ISME Journal, 2018, 12, 1867-1878.	9.8	63
7	WD40-repeat protein MoCreC is essential for carbon repression and is involved in conidiation, growth and pathogenicity of Magnaporthe oryzae. Current Genetics, 2017, 63, 685-696.	1.7	22
8	The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes. Journal of Integrative Agriculture, 2017, 16, 2746-2760.	3.5	119
9	Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species. Scientific Reports, 2016, 6, 25591.	3.3	62
10	Rab <scp>GTP</scp> ases are essential for membrane traffickingâ€dependent growth and pathogenicity in <scp><i>F</i></scp> <i>usarium graminearum</i>	3.8	86
11	Retromer Is Essential for Autophagy-Dependent Plant Infection by the Rice Blast Fungus. PLoS Genetics, 2015, 11, e1005704.	3.5	61
12	<i>Neurospora crassa</i> ASM-1 complements the conidiation defect in a <i>stuA</i> mutant of <i>Aspergillus nidulans</i> Mycologia, 2015, 107, 298-306.	1.9	6
13	The exocyst complex: delivery hub for morphogenesis and pathogenesis in filamentous fungi. Current Opinion in Plant Biology, 2015, 28, 48-54.	7.1	14
14	A Top-Down Systems Biology Approach for the Identification of Targets for Fungal Strain and Process Development., 2014,, 25-35.		1
15	Signal Transduction Pathways. , 2014, , 50-59.		11
16	DNA Repair and Recombination. , 2014, , 96-112.		0
17	Chromatin Structure and Modification. , 2014, , 113-123.		O
18	The Conidium. , 2014, , 577-590.		19

#	Article	IF	CITATIONS
19	How Fungi Sense Sugars, Alcohols, and Amino Acids. , 2014, , 467-479.		O
20	Regulation of Gene Expression by Ambient pH. , 2014, , 480-487.		2
21	Heat Shock Response. , 2014, , 488-497.		1
22	Meiotic trans-Sensing and Silencing in Neurospora. , 2014, , 132-144.		4
23	Vacuoles in Filamentous Fungi. , 2014, , 179-190.		5
24	Peroxisomes in Filamentous Fungi. , 2014, , 191-206.		5
25	Amino Acids and Polyamines: Polyfunctional Proteins, Metabolic Cycles, and Compartmentation., 2014, , 339-358.		2
26	Circadian Rhythms. , 2014, , 442-466.		1
27	Ustilago maydis and Maize: a Delightful Interaction. , 2014, , 622-644.		2
28	Epichloë Endophytes: Models of an Ecological Strategy. , 2014, , 660-675.		1
29	Aspergillus fumigatus. , 2014, , 695-716.		4
30	Cryptococcus neoformans: Budding Yeast and Dimorphic Filamentous Fungus., 2014,, 717-735.		0
31	Histoplasma capsulatum. , 2014, , 736-750.		O
32	Mitochondria and Respiration. , 2014, , 153-178.		4
33	Biology and Genetics of Vegetative Incompatibility in Fungi. , 2014, , 274-288.		24
34	Nitrogen Metabolism in Filamentous Fungi. , 2014, , 325-338.		7
35	The Fungal Pathogen Candida albicans. , 2014, , 751-768.		0
36	Magnaporthe oryzae and Rice Blast Disease. , 2014, , 591-606.		14

#	Article	IF	CITATIONS
37	Mating and Sexual Morphogenesis in Basidiomycete Fungi. , 2014, , 536-555.		10
38	Identification and Characterization of In planta–Expressed Secreted Effector Proteins from <i>Magnaporthe oryzae</i> That Induce Cell Death in Rice. Molecular Plant-Microbe Interactions, 2013, 26, 191-202.	2.6	141
39	Temporal and Spatial Regulation of Gene Expression During Asexual Development of <i>Neurospora crassa</i> . Genetics, 2010, 186, 1217-1230.	2.9	47
40	Functional analysis of an \hat{l} ±-1,2-mannosidase from Magnaporthe oryzae. Current Genetics, 2009, 55, 485-496.	1.7	8
41	Biochemical and molecular characterization of a putative endoglucanase in Magnaporthe grisea. Current Genetics, 2008, 53, 217-224.	1.7	6
42	Magnaporthe as a Model for Understanding Host-Pathogen Interactions. Annual Review of Phytopathology, 2007, 45, 437-456.	7.8	339
43	MGOS: A Resource for Studying Magnaporthe grisea and Oryza sativa Interactions. Molecular Plant-Microbe Interactions, 2006, 19, 1055-1061.	2.6	24
44	Fluffy, the major regulator of conidiation in Neurospora crassa, directly activates a developmentally regulated hydrophobin gene. Molecular Microbiology, 2005, 56, 282-297.	2.5	31
45	The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434, 980-986.	27.8	1,447
46	A Mitogen-Activated Protein Kinase Pathway Essential for Mating and Contributing to Vegetative Growth in Neurospora crassa. Genetics, 2005, 170, 1091-1104.	2.9	158
47	Lessons from the Genome Sequence of <i>Neurospora crassa </i> : Tracing the Path from Genomic Blueprint to Multicellular Organism. Microbiology and Molecular Biology Reviews, 2004, 68, 1-108.	6.6	572
48	Transcriptional response to glucose starvation and functional analysis of a glucose transporter of Neurospora crassa. Fungal Genetics and Biology, 2004, 41, 1104-1119.	2.1	66
49	Gene Discovery and Gene Expression in the Rice Blast Fungus, Magnaporthe grisea: Analysis of Expressed Sequence Tags. Molecular Plant-Microbe Interactions, 2004, 17, 1337-1347.	2.6	83
50	The <i>fluffy</i> Gene of <i>Neurospora crassa</i> Is Necessary and Sufficient to Induce Conidiophore Development. Genetics, 2004, 166, 1741-1749.	2.9	16
51	Title is missing!. Mycopathologia, 2003, 156, 245-246.	3.1	0
52	The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422, 859-868.	27.8	1,528
53	Identification of Peptaibols from Trichoderma virens and Cloning of a Peptaibol Synthetase. Journal of Biological Chemistry, 2002, 277, 20862-20868.	3.4	202
54	The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Molecular Microbiology, 2002, 45, 795-804.	2.5	133

#	Article	IF	CITATIONS
55	vvd Is Required for Light Adaptation of Conidiation-Specific Genes of Neurospora crassa, but Not Circadian Conidiation. Fungal Genetics and Biology, 2001, 32, 169-181.	2.1	134
56	Functional analysis of pathogenicity genes in a genomics world. Current Opinion in Microbiology, 2001, 4, 387-392.	5.1	23
57	Isolation of Pheromone Precursor Genes of Magnaporthe grisea. Fungal Genetics and Biology, 1999, 27, 253-263.	2.1	70
58	Analysis of Two Transcription Activation Elements in the Promoter of the Developmentally Regulatedcon-10Gene of Neurospora crassa. Fungal Genetics and Biology, 1998, 23, 259-268.	2.1	24
59	Tissue-Specific Repression of Starvation and Stress Responses of theNeurospora crassa con-10Gene Is Mediated by RCO1. Fungal Genetics and Biology, 1998, 23, 269-278.	2.1	37
60	Carbon Catabolite Repression of Gene Expression and Conidiation inNeurospora crassa. Fungal Genetics and Biology, 1998, 25, 15-21.	2.1	61
61	The Neurospora rca-1 Gene Complements an Aspergillus flbD Sporulation Mutant but Has No Identifiable Role in Neurospora Sporulation. Genetics, 1998, 148, 1031-1041.	2.9	37
62	The fluffy Gene of Neurospora crassa Encodes a Gal4p-Type C6 Zinc Cluster Protein Required for Conidial Development. Genetics, 1998, 148, 1813-1820.	2.9	70
63	<i>rco-3</i> , a Gene Involved in Glucose Transport and Conidiation in <i>Neurospora crassa</i> . Genetics, 1997, 146, 499-508.	2.9	127
64	Morphogenesis and vegetative differentiation in filamentous fungi. Journal of Genetics, 1996, 75, 361-374.	0.7	18
65	Light and Developmental Regulation of the Gene con-10 of Neurospora crassa. Developmental Biology, 1995, 167, 190-200.	2.0	63
66	Identification and Characterization of MPG1, a Gene Involved in Pathogenicity from the Rice Blast Fungus Magnaporthe grisea. Plant Cell, 1993, 5, 1575.	6.6	183
67	History and Importance to Human Affairs. , 0, , 1-7.		0
68	Hyphal Structure., 0,, 8-24.		12
69	Phylogenetics and Phylogenomics of the Fungal Tree of Life. , 0, , 36-49.		3
70	Mitotic Cell Cycle Control., 0,, 61-80.		2
71	Meiosis. , 0, , 81-95.		1
72	Hyphal Fusion. , 0, , 260-273.		42

#	Article	IF	CITATIONS
73	<i>Fusarium</i> Genetics and Pathogenicity. , 0, , 607-621.		1
74	Transposable Elements and Repeat-Induced Point Mutation., 0,, 124-131.		0
75	Mycoviruses., 0,, 145-152.		14
76	The Cytoskeleton in Filamentous Fungi., 0,, 207-223.		2
77	Hyphal Growth and Polarity. , 0, , 238-259.		6
78	Gluconeogenesis., 0,, 312-324.		2
79	Secondary Metabolism. , 0, , 376-395.		7
80	Plant Cell Wall and Chitin Degradation. , 0, , 396-413.		6
81	Necrotrophic Fungi: Live and Let Die. , 0, , 645-659.		0
82	Mycoparasitism. , 0, , 676-693.		38
83	Mating Systems and Sexual Morphogenesis in Ascomycetes. , 0, , 499-535.		99
84	Sulfur, Phosphorus, and Iron Metabolism., 0,, 359-375.		4
85	Regulation of <i>Aspergillus </i> Conidiation., 0,, 557-576.		23
86	Light Sensing. , 0, , 415-441.		9
87	The Cell Wall of Filamentous Fungi. , 0, , 224-237.		16