S Bin Anooz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9477274/publications.pdf

Version: 2024-02-01

623734 552781 45 717 14 26 citations h-index g-index papers 45 45 45 717 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	SnOſβ-Ga2O3 heterojunction field-effect transistors and vertical p–n diodes. Applied Physics Letters, 2022, 120, .	3.3	12
2	Toward Precise n-Type Doping Control in MOVPE-Grown \hat{l}^2 -Ga2O3 Thin Films by Deep-Learning Approach. Crystals, 2022, 12, 8.	2.2	7
3	Two inch diameter, highly conducting bulk <code><i>$^{\hat{1}^2}$</i>-Ga2O3 single crystals grown by the Czochralski method. Applied Physics Letters, 2022, 120, .</code>	3.3	31
4	High temperature phase transitions in NaNbO3 epitaxial films grown under tensile lattice strain. Applied Physics Letters, 2022, 120, .	3.3	4
5	Machine learning supported analysis of MOVPE grown Î ² -Ga2O3 thin films on sapphire. Journal of Crystal Growth, 2022, 592, 126737.	1.5	7
6	Refractory metal-based ohmic contacts on $\langle b \rangle \langle i \rangle \hat{l}^2 \langle i \rangle \langle b \rangle$ -Ga2O3 using TiW. APL Materials, 2022, 10, .	5.1	5
7	Bulk single crystals of \hat{l}^2 -Ga2O3 and Ga-based spinels as ultra-wide bandgap transparent semiconducting oxides. Progress in Crystal Growth and Characterization of Materials, 2021, 67, 100511.	4.0	47
8	Fingerprints of optical absorption in the perovskite LaInO3: Insight from many-body theory and experiment. Physical Review B, 2021, 103, .	3.2	6
9	Impact of chamber pressure and Si-doping on the surface morphology and electrical properties of homoepitaxial (100) \hat{l}^2 -Ga ₂ O ₃ thin films grown by MOVPE. Journal Physics D: Applied Physics, 2021, 54, 034003.	2.8	26
10	Fast homoepitaxial growth of (100) \hat{l}^2 -Ga2O3 thin films via MOVPE. AIP Advances, 2021, 11 , .	1.3	22
11	Switching behavior and dynamic on-resistance of lateral \hat{l}^2 -Ga ₂ O ₃ MOSFETs up to 400 V. , 2021, , .		0
12	Challenges to overcome breakdown limitations in lateral \hat{l}^2 -Ga2O3 MOSFET devices. Microelectronics Reliability, 2020, 114, 113951.	1.7	28
13	Step flow growth of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Ga2O3 thin films on vicinal (100) $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Ga2O3 substrates grown by MOVPE. Applied Physics Letters, 2020, 116, .	3.3	59
14	Approaching the high intrinsic electrical resistivity of NbO2 in epitaxially grown films. Applied Physics Letters, 2020, 116, 182103.	3.3	14
15	Kinetic Monte Carlo model for homoepitaxial growth of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Ga</mml:mi>O</mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review Research, 2020, 2.	mrgw> <m< td=""><td>iml;mn>2</td></m<>	iml;mn>2
16	Lateral 1.8 kV \$eta\$ -Ga ₂ O ₃ MOSFET With 155 MW/cm ² Power Figure of Merit. IEEE Electron Device Letters, 2019, 40, 1503-1506.	3.9	104
17	Deep-level noise characterization of MOVPE-grown $\langle b \rangle \langle i \rangle \hat{l}^2 \langle i \rangle \langle b \rangle$ -Ga2O3. Applied Physics Letters, 2019, 115, .	3.3	4
18	Indium incorporation in homoepitaxial \hat{l}^2 -Ga2O3 thin films grown by metal organic vapor phase epitaxy. Journal of Applied Physics, 2019, 125, .	2.5	14

#	Article	IF	CITATIONS
19	Step-flow growth in homoepitaxy of $\langle b \rangle \hat{l}^2 \langle b \rangle$ -Ga2O3 (100)â \in "The influence of the miscut direction and faceting. APL Materials, 2019, 7, .	5.1	73
20	Refractive index and interband transitions in strain modified NaNbO ₃ thin films grown by MOCVD. Journal Physics D: Applied Physics, 2015, 48, 385303.	2.8	2
21	Strain-induced phase transitions in epitaxial NaNbO ₃ thin films grown by metal–organic chemical vapour deposition. Journal of Applied Crystallography, 2012, 45, 1015-1023.	4.5	40
22	Growth of epitaxial sodium-bismuth-titanate films by metal-organic chemical vapor phase deposition. Thin Solid Films, 2011, 520, 239-244.	1.8	11
23	Optical constants of MOCVD-grown Aurivillius phases in the Bi4Ti3O12–Na0.5Bi0.5TiO3 system measured by spectroscopic ellipsometry. Applied Physics A: Materials Science and Processing, 2011, 105, 81-88.	2.3	2
24	Structural and transport properties of SrRuO3 thin films grown by MOCVD on (001) SrTiO3 substrates: The role of built-in strain and extra phases. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 647-652.	3.5	5
25	Spectroscopic ellipsometry studies on the optical constants of Bi4Ti3O12:xNa thin films grown by metal-organic chemical vapor deposition. Thin Solid Films, 2011, 519, 3782-3788.	1.8	6
26	Impact of epitaxial strain on the ferromagnetic transition temperature of SrRuO3 thin films. Thin Solid Films, 2011, 519, 6264-6268.	1.8	12
27	Effects of postâ€growth annealing on physical properties of SrRuO ₃ thin film grown by MOCVD. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2492-2498.	1.8	10
28	Effect of on the growth and thermal properties of K2SO4 crystal. Journal of Physics and Chemistry of Solids, 2008, 69, 2356-2359.	4.0	3
29	Doping-induced-effects on conduction mechanisms in incommensurate ammonium zinc chloride crystals. Crystal Research and Technology, 2007, 42, 569-577.	1.3	5
30	The solid state phase transformation of potassium sulfate. Solid State Communications, 2007, 141, 497-501.	1.9	18
31	Effects induced by chemical non-stoichiometry and \hat{i} -irradiation on the habit and unit cell parameters of ammonium tetrachlorozincate. Crystal Research and Technology, 2006, 41, 379-387.	1.3	0
32	Optical properties of pure and metal ions doped ammonium sulfate single crystals. Crystal Research and Technology, 2006, 41, 487-493.	1.3	15
33	Growth and characterization of undoped, Sr2+-, and Mn2+-doped ammonium tetrachlorozincate. Crystal Research and Technology, 2005, 40, 204-211.	1.3	4
34	Influence of Sr2+Doping, Temperature and Frequency on Dielectric Constant, Dielectric Loss Factor and AC Conductivity of Ammonium Zinc Chloride Crystal. Japanese Journal of Applied Physics, 2005, 44, 1883-1891.	1.5	1
35	Mn2+-Doping Effects on Commensuration and Incommensuration of Ammonium Zinc Chloride Crystal. Ferroelectrics, 2004, 313, 113-128.	0.6	1
36	The non-isotropic character of electric and dielectric properties of ammonium zinc chloride crystal. Journal of Physics and Chemistry of Solids, 2004, 65, 957-964.	4.0	4

#	Article	IF	CITATIONS
37	Mechanism of the dc conduction in undoped and Sr2+ doped ammonium zinc chloride crystal. Solid State Communications, 2004, 129, 797-802.	1.9	2
38	Electron irradiation-induced effects on optical spectra of (NH4)2ZnCl4: x Sr2 single crystals. Crystal Research and Technology, 2003, 38, 83-93.	1.3	4
39	Optical absorption spectra and related parameters of ammonium zinc chloride crystal in the antiferroelectric and commensurate phases. Crystal Research and Technology, 2003, 38, 798-810.	1.3	17
40	Influence of strontium doping on the indirect band gap and optical constants of ammonium zinc chloride crystals. Physica B: Condensed Matter, 2003, 327, 43-54.	2.7	80
41	Temperature dependence of the indirect band gap and related optical parameters of (NH4)2ZnCl4:xSr2+ single crystals. Physica Status Solidi (B): Basic Research, 2003, 240, 246-254.	1.5	O
42	Effects induced by ?-irradiation on intraband transitions in Sr2+-doped ammonium zinc chloride crystals. Radiation Effects and Defects in Solids, 2003, 158, 743-755.	1.2	1
43	Effect on quench rate on the precipitation hardening of Al100-x Lix binary alloys. High Temperatures - High Pressures, 2003, 35/36, 453-464.	0.3	O
44	Study of electrical and thermal properties of Al100-xLix. Materials Science and Technology, 2002, 18, 201-206.	1.6	0
45	Phase transformation kinetics during the heating of an AlÂ-Â8Âat% Li alloy. High Temperatures - High Pressures, 2002, 34, 535-548.	0.3	1