Geoff A Parker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9477209/publications.pdf Version: 2024-02-01

		31976	20358
119	21,766	53	116
papers	citations	h-index	g-index
123	123	123	9376
all docs	docs citations	times ranked	citing authors
123 all docs	123 docs citations	123 times ranked	9376 citing authors

#	Article	IF	CITATIONS
1	SPERM COMPETITION AND ITS EVOLUTIONARY CONSEQUENCES IN THE INSECTS. Biological Reviews, 1970, 45, 525-567.	10.4	3,184
2	Assessment strategy and the evolution of fighting behaviour. Journal of Theoretical Biology, 1974, 47, 223-243.	1.7	1,975
3	The logic of asymmetric contests. Animal Behaviour, 1976, 24, 159-175.	1.9	1,722
4	Sperm competition, male prudence and sperm-limited females. Trends in Ecology and Evolution, 2002, 17, 313-320.	8.7	1,029
5	Punishment in animal societies. Nature, 1995, 373, 209-216.	27.8	923
6	Optimality theory in evolutionary biology. Nature, 1990, 348, 27-33.	27.8	824
7	Sexual coercion in animal societies. Animal Behaviour, 1995, 49, 1345-1365.	1.9	746
8	Potential Reproductive Rates and the Operation of Sexual Selection. Quarterly Review of Biology, 1992, 67, 437-456.	0.1	744
9	The origin and evolution of gamete dimorphism and the male-female phenomenon. Journal of Theoretical Biology, 1972, 36, 529-553.	1.7	571
10	Sexual conflict over mating and fertilization: an overview. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361, 235-259.	4.0	561
11	Optimal Egg Size and Clutch Size: Effects of Environment and Maternal Phenotype. American Naturalist, 1986, 128, 573-592.	2.1	530
12	Sperm Competition in Fishes: The Evolution of Testis Size and Ejaculate Characteristics. American Naturalist, 1997, 149, 933-954.	2.1	522
13	Sperm competition and ejaculate economics. Biological Reviews, 2010, 85, 897-934.	10.4	488
14	Sexual conflict and speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 1998, 353, 261-274.	4.0	403
15	Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4.	27.8	339
16	Sperm competition games: a prospective analysis of risk assessment. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1793-1802.	2.6	333
17	Intrafamilial conflict and parental investment: a synthesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 295-307.	4.0	281
18	Sperm competition games: individual assessment of sperm competition intensity by group spawners. Proceedings of the Royal Society B: Biological Sciences, 1996, 263, 1291-1297.	2.6	268

#	Article	IF	CITATIONS
19	Begging for control: when are offspring solicitation behaviours honest?. Trends in Ecology and Evolution, 2002, 17, 434-440.	8.7	256
20	Sexual dimorphism and distorted sex ratios in spiders. Nature, 1992, 360, 156-159.	27.8	255
21	The evolution of sexual size dimorphism in fish*. Journal of Fish Biology, 1992, 41, 1-20.	1.6	239
22	Sperm competition games: sperm size and sperm number under adult control. Proceedings of the Royal Society B: Biological Sciences, 1993, 253, 245-254.	2.6	237
23	Effects of alternative male mating strategies on characteristics of sperm production in the Atlantic salmon (Salmo salar): theoretical and empirical investigations. Philosophical Transactions of the Royal Society B: Biological Sciences, 1995, 350, 391-399.	4.0	226
24	SPERM COMPETITION GAMES: A GENERAL MODEL FOR PRECOPULATORY MALE-MALE COMPETITION. Evolution; International Journal of Organic Evolution, 2013, 67, 95-109.	2.3	193
25	Polyandry: the history of a revolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120335.	4.0	187
26	Evolution of complex life cycles in helminth parasites. Nature, 2003, 425, 480-484.	27.8	172
27	Parental investment and the control of sexual selection: predicting the direction of sexual competition. Proceedings of the Royal Society B: Biological Sciences, 1996, 263, 315-321.	2.6	167
28	Sperm competition and sperm phenotype. , 2009, , 207-245.		164
29	Resolving variation in the reproductive tradeoff between sperm size and number. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5325-5330.	7.1	160
30	Sexual conflict reduces offspring fitness in zebra finches. Nature, 2002, 416, 733-736.	27.8	157
31	Evolution of phenotypic optima and copula duration in dungflies. Nature, 1994, 370, 53-56.	27.8	153
32	Cooperation under predation risk: experiments on costs and benefits. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 831-837.	2.6	141
33	Sperm competition games: sperm size and number under gametic control. Proceedings of the Royal Society B: Biological Sciences, 1993, 253, 255-262.	2.6	136
34	The Sexual Cascade and the Rise of Pre-Ejaculatory (Darwinian) Sexual Selection, Sex Roles, and Sexual Conflict. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017509-a017509.	5.5	135
35	Sperm competition, mating rate and the evolution of testis and ejaculate sizes: a population model. Biology Letters, 2005, 1, 235-238.	2.3	132
36	Siblicide, family conflict and the evolutionary limits of selfishness. Animal Behaviour, 1998, 56, 1-10.	1.9	130

#	Article	IF	CITATIONS
37	Begging scrambles with unequal chicks: interactions between need and competitive ability. Ecology Letters, 2002, 5, 206-215.	6.4	128
38	Biparental care in house sparrows: negotiation or sealed bid?. Behavioral Ecology, 2002, 13, 713-721.	2.2	116
39	Sperm Displacement in the Yellow Dung Fly,Scatophaga stercoraria: An Investigation of Male and Female Processes. American Naturalist, 1999, 153, 302-314.	2.1	108
40	Sperm competition or sperm selection: no evidence for female influence over paternity in yellow dung flies Scatophaga stercoraria. Behavioral Ecology and Sociobiology, 1996, 38, 199-206.	1.4	99
41	The evolution of anisogamy: a game-theoretic approach. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 2381-2388.	2.6	99
42	The relationship between continuous input and interference models of ideal free distributions with unequal competitors. Animal Behaviour, 1992, 44, 345-355.	1.9	89
43	WHEN SHOULD A TROPHICALLY TRANSMITTED PARASITE MANIPULATE ITS HOST?. Evolution; International Journal of Organic Evolution, 2009, 63, 448-458.	2.3	88
44	Sibling competition and the evolution of growth rates in birds. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 923-932.	2.6	86
45	Why anisogamy drives ancestral sex roles. Evolution; International Journal of Organic Evolution, 2016, 70, 1129-1135.	2.3	75
46	Predicting variation in sperm precedence. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 771-780.	4.0	71
47	Optimal growth strategies of larval helminths in their intermediate hosts. Journal of Evolutionary Biology, 2003, 16, 47-54.	1.7	70
48	WHEN TO GO: OPTIMIZATION OF HOST SWITCHING IN PARASITES WITH COMPLEX LIFE CYCLES. Evolution; International Journal of Organic Evolution, 2009, 63, 1976-1986.	2.3	70
49	Parental investment and family dynamics: interactions between theory and empirical tests. Population Ecology, 2004, 46, 231-241.	1.2	69
50	Optimal copula duration in yellow dung flies: effects of female size and egg content. Animal Behaviour, 1999, 57, 795-805.	1.9	66
51	The evolution of expenditure on testes. Journal of Zoology, 2016, 298, 3-19.	1.7	65
52	Female reproductive biology and the coevolution of ejaculate characteristics in fish. Proceedings of the Royal Society B: Biological Sciences, 1996, 263, 451-458.	2.6	64
53	Sperm Competition Games: Inter- and Intra-species Results of a Continuous External Fertilization Model. Journal of Theoretical Biology, 1997, 186, 459-466.	1.7	64
54	Sperm competition games: sperm selection by females. Journal of Theoretical Biology, 2003, 224, 27-42.	1.7	64

#	Article	IF	CITATIONS
55	Sperm competition games: Sperm size (mass) and number under raffle and displacement, and the evolution of P2. Journal of Theoretical Biology, 2010, 264, 1003-1023.	1.7	52
56	Conceptual developments in sperm competition: a very brief synopsis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200061.	4.0	51
57	Life history consequences of mammal sibling rivalry. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12932-12937.	7.1	50
58	Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent. Journal of Evolutionary Biology, 2015, 28, 267-291.	1.7	49
59	Parent-offspring conflict over clutch size. Evolutionary Ecology, 1987, 1, 161-174.	1.2	47
60	Sperm competition games: the risk model can generate higher sperm allocation to virgin females. Journal of Evolutionary Biology, 2007, 20, 767-779.	1.7	47
61	What do isogamous organisms teach us about sex and the two sexes?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150532.	4.0	46
62	Sperm morphometry in the Atlantic salmon. Journal of Fish Biology, 1998, 53, 835-840.	1.6	45
63	Marginal Value Theorem with Exploitation Time Costs: Diet, Sperm Reserves, and Optimal Copula Duration in Dung Flies. American Naturalist, 1992, 139, 1237-1256.	2.1	44
64	Competitive Growth Strategies in Intermediate Hosts: Experimental Tests of a Parasite life-History Model Using the Cestode, Schistocephalus solidus. Evolutionary Ecology, 2006, 20, 39-57.	1.2	43
65	Consequences of biparental care for begging and growth in zebra finches, Taeniopygia guttata. Animal Behaviour, 2006, 72, 123-130.	1.9	43
66	Sexual Selection: The Logical Imperative. History, Philosophy and Theory of the Life Sciences, 2015, , 119-163.	0.4	42
67	Scramble in behaviour and ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355, 1637-1645.	4.0	41
68	Interference and the ideal free distribution: models and tests. Behavioral Ecology, 1996, 7, 379-386.	2.2	40
69	Spermicide by females: what should males do?. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1759-1763.	2.6	40
70	Parent—offspring conflict: the full–sib—half–sib fallacy. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1637-1643.	2.6	39
71	Living in intermediate hosts: evolutionary adaptations in larval helminths. Trends in Parasitology, 2010, 26, 93-102.	3.3	38
72	Dimensionless invariants from foraging theory's marginal value theorem Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1446-1450.	7.1	37

#	Article	IF	CITATIONS
73	Gamete competition, gamete limitation, and the evolution of the two sexes. Molecular Human Reproduction, 2014, 20, 1161-1168.	2.8	37
74	Sperm Competition Games: A Comparison of Loaded Raffle Models and their Biological Implications. Journal of Theoretical Biology, 2000, 206, 487-506.	1.7	36
75	Male house sparrows deliver more food to experimentally subsidized offspring. Animal Behaviour, 2005, 70, 225-236.	1.9	35
76	The evolution of gonad expenditure and gonadosomatic index (GSI) in male and female broadcastâ€ s pawning invertebrates. Biological Reviews, 2018, 93, 693-753.	10.4	35
77	â€~Sloppy' sperm mixing and intraspecific variation in sperm precedence (P2) patterns. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2537-2542.	2.6	31
78	Complex Life Cycles: Why Refrain from Growth before Reproduction in the Adult Niche?. American Naturalist, 2013, 181, 39-51.	2.1	31
79	Evolutionarily stable foraging speeds in feeding scrambles: a model and an experimental test. Proceedings of the Royal Society B: Biological Sciences, 1995, 260, 273-277.	2.6	30
80	To grow or not to grow? Intermediate and paratenic hosts as helminth life cycle strategies. Journal of Theoretical Biology, 2009, 258, 135-147.	1.7	29
81	The evolution of complex life cycles when parasite mortality is size- or time-dependent. Journal of Theoretical Biology, 2008, 253, 202-214.	1.7	28
82	Gamete evolution and sperm numbers: sperm competition versus sperm limitation. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140836.	2.6	28
83	Sperm Competition Games: a General Approach to Risk Assessment. Journal of Theoretical Biology, 1998, 194, 251-262.	1.7	27
84	Sperm competition games between related males. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1027-1032.	2.6	27
85	The trophic vacuum and the evolution of complex life cycles in trophically transmitted helminths. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141462.	2.6	27
86	Survival and anisogamy. Trends in Ecology and Evolution, 2002, 17, 357-358.	8.7	25
87	Debating Sexual Selection and Mating Strategies. Science, 2006, 312, 689b-697b.	12.6	25
88	Endless forms of sexual selection. PeerJ, 2019, 7, e7988.	2.0	24
89	The origin and maintenance of two sexes (anisogamy), and their gamete sizes by gamete competition. , 2011, , 17-74.		23
90	Giant female or dwarf male spiders?. Nature, 1997, 385, 688-688.	27.8	22

#	Article	IF	CITATIONS
91	Hamilton's rule and conditionality. Ethology Ecology and Evolution, 1989, 1, 195-211.	1.4	21
92	Parental investment and the control of sexual selection: can sperm competition affect the direction of sexual competition?. Proceedings of the Royal Society B: Biological Sciences, 1996, 263, 515-519.	2.6	21
93	Interference and the ideal free distribution: oviposition in a parasitoid wasp. Behavioral Ecology, 1996, 7, 387-394.	2.2	21
94	Lifeâ€cycle complexity in helminths: What are the benefits?. Evolution; International Journal of Organic Evolution, 2021, 75, 1936-1952.	2.3	20
95	EXPLOITATION OF THE SAME TROPHIC LINK FAVORS CONVERGENCE OF LARVAL LIFE-HISTORY STRATEGIES IN COMPLEX LIFE CYCLE HELMINTHS. Evolution; International Journal of Organic Evolution, 2011, 65, 2286-2299.	2.3	18
96	Evolution of the Two Sexes under Internal Fertilization and Alternative Evolutionary Pathways. American Naturalist, 2019, 193, 702-716.	2.1	16
97	Evolutionary insight from a humble fly: sperm competition and the yellow dungfly. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20200062.	4.0	15
98	Why do larval helminths avoid the gut of intermediate hosts?. Journal of Theoretical Biology, 2009, 260, 460-473.	1.7	14
99	Evolution of complex life cycles in trophically transmitted helminths. <scp>II</scp> . How do lifeâ€history stages adapt to their hosts?. Journal of Evolutionary Biology, 2015, 28, 292-304.	1.7	14
100	Information asymmetries among males: implications for fertilization success in the thirteen–lined ground squirrel. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1861-1865.	2.6	13
101	Cooperation under predation risk: a data-based ESS analysis. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 1239-1247.	2.6	11
102	Interference with ideal free models. Trends in Ecology and Evolution, 1998, 13, 410.	8.7	10

#	Article	IF	CITATIONS
109	Reproductive traits and relative gonad expenditure of the sexes of the free spawning <i>Chiton articulatus</i> (Mollusca: Polyplacophora). Invertebrate Reproduction and Development, 2018, 62, 268-289.	0.8	6
110	Ungulate Helminth Transmission and Two Evolutionary Puzzles. Trends in Parasitology, 2020, 36, 64-79.	3.3	6
111	Male "Mixed―Reproductive Strategies in Biparental Species: Trivers Was Probably Right, but Why?. American Naturalist, 2005, 165, 95-106.	2.1	5
112	So we all choose our own assessment rules?: a comment on Chapin et al. Behavioral Ecology, 2019, 30, 1188-1188.	2.2	4
113	A comparative test of the gamete dynamics theory for the evolution of anisogamy in Bryopsidales green algae. Royal Society Open Science, 2021, 8, 201611.	2.4	3
114	Complex life-cycles in trophically transmitted helminths: Do the benefits of increased growth and transmission outweigh generalism and complexity costs?. Current Research in Parasitology and Vector-borne Diseases, 2022, 2, 100085.	1.9	3
115	Trinucleotide microsatellite loci in the yellow dung fly Scathophaga stercoraria (Diptera:) Tj ETQq1 1 0.784314 rg	gBT /Overl 1.7	ock 10 Tf 50
116	Geoff A. Parker. Current Biology, 2007, 17, R111-R112.	3.9	2
117	Evolutionary sperm wars. Journal of Biological Education, 1997, 31, 167-168.	1.5	1
118	The devil is in the details: a comment on Shuker and Kvarnemo. Behavioral Ecology, 2021, 32, 798-799.	2.2	1
119	Maximum gonad investment of the sexes of the broadcast-spawning sea cucumber <i>Holothuria</i> (<i>Halodeima</i>) <i>inornata</i> (Echinodermata: Holothuroidea). Journal of the Marine Biological Association of the United Kingdom, 0, , 1-13.	0.8	1