Richard Isaac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9475769/publications.pdf

Version: 2024-02-01

186265 206112 2,467 67 28 48 h-index citations g-index papers 69 69 69 2476 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Proline-specific aminopeptidase P prevents replication-associated genome instability. PLoS Genetics, 2022, 18, e1010025.	3.5	2
2	2020 Invertebrate Neuropeptide Award Announcement. Peptides, 2022, 151, 170762.	2.4	O
3	Protection of Double-Stranded RNA <i>via</i> Complexation with Double Hydrophilic Block Copolymers: Influence of Neutral Block Length in Biologically Relevant Environments. Biomacromolecules, 2022, 23, 2362-2373.	5.4	7
4	Structural basis for the inhibition of human angiotensinâ€l converting enzyme by fosinoprilat. FEBS Journal, 2022, 289, 6659-6671.	4.7	5
5	Metalloaminopeptidases of the Protozoan Parasite <i>Plasmodium falciparum</i> as Targets for the Discovery of Novel Antimalarial Drugs. Journal of Medicinal Chemistry, 2021, 64, 1763-1785.	6.4	5
6	Mass spectrometric characterisation of the major peptides of the male ejaculatory duct, including a glycopeptide with an unusual zwitterionic glycosylation. Journal of Proteomics, 2021, 246, 104307.	2.4	0
7	The structure of the Drosophila melanogaster sex peptide: Identification of hydroxylated isoleucine and a strain variation in the pattern of amino acid hydroxylation. Insect Biochemistry and Molecular Biology, 2020, 124, 103414.	2.7	3
8	role for myosuppressin. General and Comparative Endocrinology, 2019, 278, 50-57.	1.8	1
9	The Effect of Mating and the Male Sex Peptide on Group Behaviour of Post-mated Female Drosophila melanogaster. Neurochemical Research, 2019, 44, 1508-1516.	3.3	5
10	Crystal structures of angiotensin-converting enzyme from Anopheles gambiae in its native form and with a bound inhibitor. Biochemical Journal, 2019, 476, 3505-3520.	3.7	6
11	pH-responsive polymer microcapsules for targeted delivery of biomaterials to the midgut of Drosophila suzukii. PLoS ONE, 2018, 13, e0201294.	2.5	12
12	The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae. Scientific Reports, 2017, 7, 45409.	3.3	7
13	Peptidergic control in a fruit crop pest: The spotted-wing drosophila, Drosophila suzukii. PLoS ONE, 2017, 12, e0188021.	2.5	9
14	Crystal structure of Xâ€prolyl aminopeptidase from <i>Caenorhabditis elegans</i> : A cytosolic enzyme with a diâ€nuclear active site. FEBS Open Bio, 2015, 5, 292-302.	2.3	12
15	A Neuronal Pathway that Controls Sperm Ejection and Storage in Female Drosophila. Current Biology, 2015, 25, 790-797.	3.9	83
16	The sexual dimorphic behaviour of adult <i>Drosophila suzukii</i> : elevated female locomotor activity and loss of siesta is a post-mating response. Journal of Experimental Biology, 2015, 218, 3855-61.	1.7	38
17	Genomic and peptidomic analyses of the neuropeptides from the emerging pest, Drosophila suzukii. Peptides, 2015, 68, 33-42.	2.4	23
18	Battle of the sexes over paternity. BMB Reports, 2015, 48, 241-242.	2.4	1

#	Article	IF	Citations
19	The degradome and the evolution of Drosophila sex peptide as a ligand for the MIP receptor. Peptides, 2014, 53, 258-264.	2.4	7
20	The host-seeking inhibitory peptide, Aea-HP-1, is made in the male accessory gland and transferred to the female during copulation. Peptides, 2012, 34, 150-157.	2.4	27
21	Biostable multi-Aib analogs of tachykinin-related peptides demonstrate potent oral aphicidal activity in the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidae). Peptides, 2011, 32, 587-594.	2.4	33
22	Loss of Angiotensin-converting enzyme-related (ACER) peptidase disrupts night-time sleep in adult <i>Drosophila melanogaster</i> Journal of Experimental Biology, 2011, 214, 680-686.	1.7	26
23	<i>Drosophila</i> male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 65-70.	2.6	206
24	The PAM-1 aminopeptidase regulates centrosome positioning to ensure anterior–posterior axis specification in one-cell C. elegans embryos. Developmental Biology, 2010, 344, 992-1000.	2.0	21
25	Neuropeptidases and the metabolic inactivation of insect neuropeptides. General and Comparative Endocrinology, 2009, 162, 8-17.	1.8	51
26	Locomotor and geotactic behavior of Drosophila melanogaster over-expressing neprilysin 2. Peptides, 2009, 30, 571-574.	2.4	27
27	Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC Evolutionary Biology, 2008, 8, 16.	3.2	71
28	Male accessory glands of <i>Drosophila melanogaster</i> make a secreted angiotensin I-converting enzyme (ANCE), suggesting a role for the peptide-processing enzyme in seminal fluid. Journal of Experimental Biology, 2007, 210, 3601-3606.	1.7	42
29	Metabolic inactivation of the circadian transmitter, pigment dispersing factor (PDF), by neprilysin-like peptidases in Drosophila. Journal of Experimental Biology, 2007, 210, 4465-4470.	1.7	24
30	Angiotensin-converting enzyme as a target for the development of novel insect growth regulators. Peptides, 2007, 28, 153-162.	2.4	35
31	Expression of NEP2, a soluble neprilysin-like endopeptidase, during embryogenesis in Drosophila melanogaster. Peptides, 2007, 28, 127-135.	2.4	18
32	Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase. Proteome Science, 2006, 4, 9.	1.7	73
33	Structural diversity of angiotensin-converting enzyme. Insights from structure-activity comparisons of two Drosophila enzymes. FEBS Journal, 2006, 273, 362-373.	4.7	21
34	The angiotensin-converting enzyme (ACE) gene family of Anopheles gambiae. BMC Genomics, 2005, 6, 172.	2.8	25
35	Drosophila melanogaster NEP2 is a new soluble member of the neprilysin family of endopeptidases with implications for reproduction and renal function. Biochemical Journal, 2005, 386, 357-366.	3.7	38
36	Proctolin in the post-genomic era: new insights and challenges. Invertebrate Neuroscience, 2004, 5, 51-64.	1.8	39

#	Article	IF	CITATIONS
37	Identification of a proctolin preprohormone gene (Proct) of Drosophila melanogaster: Expression and predicted prohormone processing. Journal of Neurobiology, 2004, 58, 379-391.	3.6	47
38	Identification and localization of a neprilysin-like activity that degrades tachykinin-related peptides in the brain of the cockroach, Leucophaea maderae, and locust, Locusta migratoria. Journal of Comparative Neurology, 2003, 457, 57-66.	1.6	17
39	The drosophila angiotensin-converting enzyme homologue Ance is required for spermiogenesis. Developmental Biology, 2003, 254, 238-247.	2.0	56
40	ACE inhibitors reduce fecundity in the mosquito, Anopheles stephensi. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003, 134, 593-598.	1.6	29
41	An Essential Role in Molting and Morphogenesis of Caenorhabditis elegans for ACN-1, a Novel Member of the Angiotensin-converting Enzyme Family That Lacks a Metallopeptidase Active Site. Journal of Biological Chemistry, 2003, 278, 52340-52346.	3.4	65
42	Ance, a Drosophila angiotensin-converting enzyme homologue, is expressed in imaginal cells during metamorphosis and is regulated by the steroid, 20-hydroxyecdysone. Biochemical Journal, 2002, 367, 187-193.	3.7	32
43	Inactivation of a tachykinin-related peptide: identification of four neuropeptide-degrading enzymes in neuronal membranes of insects from four different orders. Peptides, 2002, 23, 725-733.	2.4	33
44	Extracellular peptidases of imaginal discs of Drosophila melanogaster. Peptides, 2002, 23, 2007-2014.	2.4	19
45	Peptidyl dipeptidases (Ance and Acer) of Drosophila melanogaster: major differences in the substrate specificity of two homologs of human angiotensin I-converting enzyme. Peptides, 2002, 23, 2025-2034.	2.4	32
46	Functional expression and characterization of the cytoplasmic aminopeptidase P of Caenorhabditis elegans. FEBS Journal, 2001, 268, 5430-5438.	0.2	31
47	The neprilysin (NEP) family of zinc metalloendopeptidases: Genomics and function. BioEssays, 2001, 23, 261-269.	2.5	388
48	The neprilysin-like gene family in <i>Drosophila melanogaster</i> . Biochemical Society Transactions, 2000, 28, A81-A81.	3.4	0
49	Probing the biological roles of nucleoside transporters using <i>Caenorhabditis elegans</i> as a model organism. Biochemical Society Transactions, 2000, 28, A93-A93.	3.4	0
50	Expression and Functional Characterization of aDrosophila Neuropeptide Precursor with Homology to Mammalian Preprotachykinin A. Journal of Biological Chemistry, 2000, 275, 23273-23280.	3.4	139
51	Functional Conservation of the Active Sites of Human andDrosophilaAngiotensin I-Converting Enzymeâ€. Biochemistry, 2000, 39, 8963-8969.	2.5	62
52	Insect Angiotensin-converting Enzyme: A Processing Enzyme with Broad Substrate Specificity and a Role in Reproduction. Annals of the New York Academy of Sciences, 1999, 897, 342-347.	3.8	46
53	Hydrolysis by somatic angiotensin-I converting enzyme of basic dipeptides from a cholecystokinin/gastrin and a LH-RH peptide extended at the C-terminus with Gly-Arg/Lys-Arg, but not from diarginyl insulin. FEBS Journal, 1999, 262, 569-574.	0.2	6
54	Toward a Role for Angiotensin-Converting Enzyme in Insects. Annals of the New York Academy of Sciences, 1998, 839, 288-292.	3.8	21

#	Article	IF	CITATIONS
55	The Drosophila melanogaster-related angiotensin-l-converting enzymes Acer and Ance . Distinct enzymic characteristics and alternative expression during pupal development. FEBS Journal, 1998, 257, 599-606.	0.2	78
56	A novel peptide-processing activity of insect peptidyl-dipeptidase A (angiotensin I-converting enzyme): the hydrolysis of lysyl-arginine and arginyl-arginine from the C-terminus of an insect prohormone peptide. Biochemical Journal, 1998, 330, 61-65.	3.7	49
57	Cleavage of arginyl-arginine and lysyl-arginine from the C-terminus ofpro-hormone peptides by human germinal angiotensin l-converting enzyme (ACE) and the C-domain of human somatic ACE. Biochemical Journal, 1997, 328, 587-591.	3.7	24
58	Characterisation of ZK643.3: a putative 7TM neuropeptide receptor. Biochemical Society Transactions, 1997, 25, 440S-440S.	3.4	0
59	Characterisation of a C. elegans neurotransmitter transporter gene. Biochemical Society Transactions, 1997, 25, 552S-552S.	3.4	O
60	The expression of a <i>C. elegans</i> neurotransmitter transporter gene (T25B6.7). Biochemical Society Transactions, 1997, 25, 553S-553S.	3.4	0
61	Purification and characterization of prostaglandin-H E-isomerase, a sigma-class glutathione S-transferase, from Ascaridia galli. Biochemical Journal, 1996, 313, 223-227.	3.7	59
62	The endopeptidase activity and the activation by Clâ [^] of angiotensin-converting enzyme is evolutionarily conserved: purification and properties of an an angiotensin-converting enzyme from the housefly, <i>Musca domestica</i> . Biochemical Journal, 1996, 314, 639-646.	3.7	74
63	Cloning and Expression of an Evolutionary Conserved Single-domain Angiotensin Converting Enzyme from Drosophila melanogaster. Journal of Biological Chemistry, 1995, 270, 13613-13619.	3.4	131
64	Metabolism of AF1 (KNEFIRF-NH2) in the nematode <i>Ascaris suum</i> . Biochemical Society Transactions, 1994, 22, 293S-293S.	3.4	8
65	Characterisation of putative <i>Drosophila</i> angiotensin converting enzyme cDNA clones. Biochemical Society Transactions, 1993, 21, 243S-243S.	3.4	7
66	Metabolism of insect hypertrehalosemic hormone in <i>Blaberus discoidalis</i> cockroaches. Biochemical Society Transactions, 1993, 21, 244S-244S.	3.4	3
67	Identification of an ACE-like peptidyl dipeptidase activity in the housefly, <i>Musca domestica</i> Biochemical Society Transactions, 1993, 21, 245S-245S.	3.4	7