George V Rebec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9474872/publications.pdf Version: 2024-02-01

		71061	102432
123	5,207	41	66
papers	citations	h-index	g-index
123	123	123	3565
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Measuring movement in health and disease. Brain Research Bulletin, 2022, 181, 167-174.	1.4	2
2	Voltammetry in Behaving Animals. Neuromethods, 2021, , 469-487.	0.2	0
3	Striatal network modeling in Huntington's Disease. PLoS Computational Biology, 2020, 16, e1007648.	1.5	8
4	Striatal network modeling in Huntington's Disease. , 2020, 16, e1007648.		0
5	Striatal network modeling in Huntington's Disease. , 2020, 16, e1007648.		0
6	Striatal network modeling in Huntington's Disease. , 2020, 16, e1007648.		0
7	Striatal network modeling in Huntington's Disease. , 2020, 16, e1007648.		0
8	Striatal network modeling in Huntington's Disease. , 2020, 16, e1007648.		0
9	Lack of mutant huntingtin in cortical efferents improves behavioral inflexibility and corticostriatal dynamics in Huntington's disease mice. Journal of Neurophysiology, 2019, 122, 2621-2629.	0.9	4
10	Circadian entrainment by food and drugs of abuse. Behavioural Processes, 2019, 165, 23-28.	0.5	18
11	Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacological Research, 2019, 146, 104321.	3.1	65
12	Corticostriatal network dysfunction in Huntington's disease: Deficits in neural processing, glutamate transport, and ascorbate release. CNS Neuroscience and Therapeutics, 2018, 24, 281-291.	1.9	28
13	Overview of Huntington's Disease Models: Neuropathological, Molecular, and Behavioral Differences. Current Protocols in Neuroscience, 2018, 83, e47.	2.6	17
14	Cortico-Striatal Cross-Frequency Coupling and Gamma Genesis Disruptions in Huntington's Disease Mouse and Computational Models. ENeuro, 2018, 5, ENEURO.0210-18.2018.	0.9	15
15	Dysregulated corticostriatal activity in open-field behavior and the head-twitch response induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine. Neuropharmacology, 2017, 113, 502-510.	2.0	8
16	Dysregulation of Corticostriatal Connectivity in Huntington's Disease: AÂRole for Dopamine Modulation. Journal of Huntington's Disease, 2016, 5, 303-331.	0.9	36
17	Corticostriatal Dysfunction in Huntington's Disease: The Basics. Frontiers in Human Neuroscience, 2016, 10, 317.	1.0	52
18	Early exposure to dynamic environments alters patterns of motor exploration throughout the lifespan. Behavioural Brain Research, 2016, 302, 81-87.	1.2	0

#		IE	CITATIONS
# 19	Voltammetry in Behaving Animals. Neuromethods, 2016, , 397-414.	0.2	1
20	Huntington's Disease and Dementia. , 2015, , 77-90.		4
21	Vitamin C and Glutamate Uptake. , 2015, , 669-678.		0
22	Cortical Efferents Lacking Mutant huntingtin Improve Striatal Neuronal Activity and Behavior in a Conditional Mouse Model of Huntington's Disease. Journal of Neuroscience, 2015, 35, 4440-4451.	1.7	58
23	Behavior Modulates Effective Connectivity between Cortex and Striatum. PLoS ONE, 2014, 9, e89443.	1.1	26
24	Extinction and reinstatement of phasic dopamine signals in the nucleus accumbens core during Pavlovian conditioning Behavioral Neuroscience, 2014, 128, 579-587.	0.6	23
25	Dysregulation of Corticostriatal Ascorbate Release and Glutamate Uptake in Transgenic Models of Huntington's Disease. Antioxidants and Redox Signaling, 2013, 19, 2115-2128.	2.5	24
26	Altered Neuronal Dynamics in the Striatum on the Behavior of Huntingtin Interacting Protein 14 (HIP14) Knockout Mice. Brain Sciences, 2013, 3, 1588-1596.	1.1	4
27	Role of cerebral cortex in the neuropathology of Huntington's disease. Frontiers in Neural Circuits, 2013, 7, 19.	1.4	75
28	Dysregulated Striatal Neuronal Processing and Impaired Motor Behavior in Mice Lacking Huntingtin Interacting Protein 14 (HIP14). PLoS ONE, 2013, 8, e84537.	1.1	9
29	Neural correlates of unpredictability in behavioral patterns of wild-type and R6/2 mice. Communicative and Integrative Biology, 2012, 5, 259-261.	0.6	4
30	Corticostriatal dysfunction and glutamate transporter 1 (GLT1) in Huntington's disease: Interactions between neurons and astrocytes. Basal Ganglia, 2012, 2, 57-66.	0.3	77
31	Abnormal burst patterns of single neurons recorded in the substantia nigra reticulata of behaving 140 CAG Huntington's disease mice. Neuroscience Letters, 2012, 512, 1-5.	1.0	9
32	Upâ€regulation of GLT1 reverses the deficit in cortically evoked striatal ascorbate efflux in the R6/2 mouse model of Huntington's disease. Journal of Neurochemistry, 2012, 121, 629-638.	2.1	43
33	Altered Neural and Behavioral Dynamics in Huntington's Disease: An Entropy Conservation Approach. PLoS ONE, 2012, 7, e30879.	1.1	16
34	Dysfunctional Behavioral Modulation of Corticostriatal Communication in the R6/2 Mouse Model of Huntington's Disease. PLoS ONE, 2012, 7, e47026.	1.1	51
35	Biological sources of inflexibility in brain and behavior with aging and neurodegenerative diseases. Frontiers in Systems Neuroscience, 2012, 6, 77.	1.2	14
36	Dysregulated Neuronal Activity Patterns Implicate Corticostriatal Circuit Dysfunction in Multiple Rodent Models of Huntington's Disease. Frontiers in Systems Neuroscience, 2011, 5, 26.	1.2	66

#	Article	IF	CITATIONS
37	Activation of D2-like receptors in rat ventral tegmental area inhibits cocaine-reinstated drug-seeking behavior. European Journal of Neuroscience, 2011, 33, 1291-1298.	1.2	30
38	Experience-dependent changes in neuronal processing in the nucleus accumbens shell in a discriminative learning task in differentially housed rats. Brain Research, 2011, 1390, 90-98.	1.1	1
39	Reduced expression of conditioned fear in the R6/2 mouse model of Huntington's disease is related to abnormal activity in prelimbic cortex. Neurobiology of Disease, 2011, 43, 379-387.	2.1	19
40	Dysregulation of coordinated neuronal firing patterns in striatum of freely behaving transgenic rats that model Huntington's disease. Neurobiology of Disease, 2010, 37, 106-113.	2.1	37
41	Ceftriaxone-induced up-regulation of cortical and striatal GLT1 in the R6/2 model of Huntington's disease. Journal of Biomedical Science, 2010, 17, 62.	2.6	77
42	Upregulation of Glt1 Attenuates Cue-Induced Reinstatement of Cocaine-Seeking Behavior in Rats. Journal of Neuroscience, 2009, 29, 9239-9243.	1.7	181
43	Environmental enrichment alters neuronal processing in the nucleus accumbens core during appetitive conditioning. Brain Research, 2009, 1259, 59-67.	1.1	12
44	Corticostriatal dysfunction underlies diminished striatal ascorbate release in the R6/2 mouse model of Huntington's disease. Brain Research, 2009, 1290, 111-120.	1.1	26
45	Force-plate quantification of progressive behavioral deficits in the R6/2 mouse model of Huntington's disease. Behavioural Brain Research, 2009, 202, 130-137.	1.2	27
46	Altered Information Processing in the Prefrontal Cortex of Huntington's Disease Mouse Models. Journal of Neuroscience, 2008, 28, 8973-8982.	1.7	80
47	Real-time dopamine efflux in the nucleus accumbens core during Pavlovian conditioning Behavioral Neuroscience, 2008, 122, 358-367.	0.6	37
48	Dysregulated Information Processing by Medium Spiny Neurons in Striatum of Freely Behaving Mouse Models of Huntington's Disease. Journal of Neurophysiology, 2008, 100, 2205-2216.	0.9	119
49	Sex differences in behavior and striatal ascorbate release in the 140 CAG knock-in mouse model of Huntington's disease. Behavioural Brain Research, 2007, 178, 90-97.	1.2	95
50	Protein Expression in the Striatum and Cortex Regions of the Brain for a Mouse Model of Huntington's Disease. Journal of Proteome Research, 2007, 6, 3134-3142.	1.8	35
51	Extracellular ascorbate modulates glutamate dynamics: role of behavioral activation. BMC Neuroscience, 2007, 8, 32.	0.8	33
52	Reinstatement of MDMA (ecstasy) seeking by exposure to discrete drug-conditioned cues. Pharmacology Biochemistry and Behavior, 2007, 87, 420-425.	1.3	34
53	Environmental enrichment reduces impulsivity during appetitive conditioning. Physiology and Behavior, 2006, 88, 132-137.	1.0	35
54	Context-dependent behavioural and neuronal sensitization in striatum to MDMA (ecstasy) administration in rats. European Journal of Neuroscience, 2006, 24, 217-228.	1.2	32

#	Article	IF	CITATIONS
55	Ascorbate modulation of sensorimotor processing in striatum of freely moving rats. Brain Research, 2006, 1092, 108-116.	1.1	5
56	Behavioral Electrophysiology of Psychostimulants. Neuropsychopharmacology, 2006, 31, 2341-2348.	2.8	51
57	Repeated Cocaine Self-Administration Alters Processing of Cocaine-Related Information in Rat Prefrontal Cortex. Journal of Neuroscience, 2006, 26, 8004-8008.	1.7	98
58	NEURONAL SUBSTRATES OF RELAPSE TO COCAINE-SEEKING BEHAVIOR: ROLE OF PREFRONTAL CORTEX. Journal of the Experimental Analysis of Behavior, 2005, 84, 653-666.	0.8	67
59	The role of prefrontal cortex D1-like and D2-like receptors in cocaine-seeking behavior in rats. Psychopharmacology, 2005, 177, 315-323.	1.5	111
60	Role of 5-HT2A and 5-HT2C/B receptors in the acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on striatal single-unit activity and locomotion in freely moving rats. Psychopharmacology, 2005, 181, 676-687.	1.5	35
61	Ionotropic Glutamate Receptors in the Ventral Tegmental Area Regulate Cocaine-Seeking Behavior in Rats. Neuropsychopharmacology, 2005, 30, 2073-2081.	2.8	61
62	Differential environmental exposure alters NMDA but not AMPA receptor subunit expression in nucleus accumbens core and shell. Brain Research, 2005, 1042, 176-183.	1.1	32
63	Extracellular ascorbate modulates cortically evoked glutamate dynamics in rat striatum. Neuroscience Letters, 2005, 378, 166-170.	1.0	35
64	Amphetamine-induced behavioral activation is associated with variable changes in basal ganglia output neurons recorded from awake, behaving rats. Brain Research, 2004, 1012, 108-118.	1.1	13
65	Wireless transmission of fast-scan cyclic voltammetry at a carbon-fiber microelectrode: proof of principle. Journal of Neuroscience Methods, 2004, 140, 103-115.	1.3	38
66	Nucleus accumbens single-unit activity in freely behaving male rats during approach to novel and non-novel estrus. Neuroscience Letters, 2004, 368, 29-32.	1.0	8
67	Acute effects of 3,4-methylenedioxymethamphetamine on striatal single-unit activity and behavior in freely moving rats: differential involvement of dopamine D1 and D2 receptors. Brain Research, 2003, 994, 203-215.	1.1	39
68	Characterization of striatal activity in conscious rats: Contribution of NMDA and AMPA/kainate receptors to both spontaneous and glutamate-driven firing. Synapse, 2003, 47, 91-100.	0.6	35
69	Dissociation of core and shell single-unit activity in the nucleus accumbens in free-choice novelty. Behavioural Brain Research, 2003, 152, 59-66.	1.2	20
70	Ascorbate treatment attenuates the Huntington behavioral phenotype in mice. NeuroReport, 2003, 14, 1263-1265.	0.6	81
71	Lidocaine Inactivation of Ventral Subiculum Attenuates Cocaine-Seeking Behavior in Rats. Journal of Neuroscience, 2003, 23, 10258-10264.	1.7	113
72	Modeling fast dopamine neurotransmission in the nucleus accumbens during behavior. Behavioural Brain Research, 2002, 137, 47-63.	1.2	44

#	Article	IF	CITATIONS
73	Amphetamine inhibits behavior-related neuronal responses in substantia nigra pars reticulata of rats working for sucrose reinforcement. Neuroscience Letters, 2002, 322, 165-168.	1.0	8
74	Dysregulation of Ascorbate Release in the Striatum of Behaving Mice Expressing the Huntington's Disease Gene. Journal of Neuroscience, 2002, 22, RC202-RC202.	1.7	67
75	Amphetamine Promotes Neostriatal Ascorbate Release via a Nigro-Thalamo-Cortico-Neostriatal Loop. Journal of Neurochemistry, 2002, 63, 1499-1507.	2.1	17
76	Behavioral Activation in Rats Requires Endogenous Ascorbate Release in Striatum. Journal of Neuroscience, 2001, 21, 668-675.	1.7	48
77	Effects of long-term haloperidol treatment on glutamate-evoked ascorbate release in rat striatum. European Journal of Pharmacology, 2001, 418, 213-216.	1.7	5
78	Effects of crus cerebri lesions and repeated amphetamine treatment on the activity of nigral dopaminergic neurons. Synapse, 2000, 38, 80-86.	0.6	2
79	Dopamine-independent action of cocaine on striatal and accumbal neurons. European Journal of Neuroscience, 2000, 12, 1789-1800.	1.2	39
80	Î ³ -Aminobutyric acid infusion in substantia nigra pars reticulata in rats inhibits ascorbate release in ipsilateral striatum. Neuroscience Letters, 2000, 280, 191-194.	1.0	7
81	Striatal Neuronal Activity and Responsiveness to Dopamine and Glutamate after Selective Blockade of D1 and D2 Dopamine Receptors in Freely Moving Rats. Journal of Neuroscience, 1999, 19, 3594-3609.	1.7	92
82	Modulation of striatal neuronal activity by glutamate and GABA: iontophoresis in awake, unrestrained rats. Brain Research, 1999, 822, 88-106.	1.1	64
83	Behavior-related changes in the activity of substantia nigra pars reticulata neurons in freely moving rats. Brain Research, 1999, 845, 68-76.	1.1	41
84	Modulatory Effects of Ascorbate, Alone or With Haloperidol, on a Lever-Release Conditioned Avoidance Response Task. Pharmacology Biochemistry and Behavior, 1999, 63, 125-129.	1.3	14
85	Real-Time Assessments of Dopamine Function during Behavior: Single-Unit Recording, Iontophoresis, and Fast-Scan Cyclic Voltammetry in Awake, Unrestrained Rats. Alcoholism: Clinical and Experimental Research, 1998, 22, 32-40.	1.4	37
86	Ascorbate modulates glutamate-induced excitations of striatal neurons. Brain Research, 1998, 812, 14-22.	1.1	41
87	Cocaine-induced activation of striatal neurons during focused stereotypy in rats. Brain Research, 1998, 810, 146-152.	1.1	25
88	Neuroethological assessment of amphetamine-induced behavioral changes and their reversal by neuroleptics: Focus on the amygdala and nucleus accumbens. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1998, 22, 883-905.	2.5	4
89	Behavioral Pharmacology of Amphetamines. , 1998, , 515-527.		4
90	Iontophoresis of amphetamine in the neostriatum and nucleus accumbens of awake, unrestrained rats. Brain Research, 1997, 771, 14-24.	1.1	25

#	Article	IF	CITATIONS
91	Regional and temporal differences in real-time dopamine efflux in the nucleus accumbens during free-choice novelty. Brain Research, 1997, 776, 61-67.	1.1	228
92	Realâ€Time Measurement of Electrically Evoked Extracellular Dopamine in the Striatum of Freely Moving Rats. Journal of Neurochemistry, 1997, 68, 152-161.	2.1	164
93	Ascorbate potentiates amphetamine-induced conditioned place preference and forebrain dopamine release in rats. Brain Research, 1995, 688, 21-26.	1.1	24
94	Repeated treatment with ascorbate or haloperidol, but not clozapine, elevates extracellular ascorbate in the neostriatum of freely moving rats. Psychopharmacology, 1994, 116, 103-109.	1.5	8
95	Neuronal activity in rabbit neostriatum during classical eyelid conditioning. Experimental Brain Research, 1994, 99, 179-90.	0.7	41
96	Cortical lesions attenuate the opposing effects of amphetamine and haloperidol on neostriatal neurons in freely moving rats. European Journal of Pharmacology, 1994, 257, 161-167.	1.7	28
97	A vitamin as neuromodulator: Ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Progress in Neurobiology, 1994, 43, 537-565.	2.8	336
98	A simple micromanipulator for multiple uses in freely moving rats: electrophysiology, voltammetry, and simultaneous intracerebral infusions. Journal of Neuroscience Methods, 1993, 47, 53-59.	1.3	70
99	Striatal single-unit responses to amphetamine and neuroleptics in freely moving rats. Neuroscience and Biobehavioral Reviews, 1993, 17, 1-12.	2.9	84
100	Neuronal and behavioral correlates of intrastriatal infusions of amphetamine in freely moving rats. Brain Research, 1993, 627, 79-88.	1.1	41
101	The involvement of D1 and D2 dopamine receptors in amphetamine-induced changes in striatal unit activity in behaving rats. Brain Research, 1993, 619, 347-351.	1.1	34
102	From psychopharmacology to neuropsychopharmacology: Adapting behavioral terminology to neural events. Behavioral and Brain Sciences, 1992, 15, 287-288.	0.4	0
103	Dopamine-, NMDA- and sigma-receptor antagonists exert differential effects on basal and amphetamine-induced changes in neostriatal ascorbate and DOPAC in awake, behaving rats. Brain Research, 1992, 579, 59-66.	1.1	29
104	BMY-14802, a sigma ligand and potential antipsychotic drug, reverses amphetamine-induced changes in neostriatal single-unit activity in freely moving rats. Synapse, 1992, 12, 312-321.	0.6	21
105	Bilateral cortical ablations attenuate amphetamine-induced excitations of neostriatal motor-related neurons in freely moving rats. Neuroscience Letters, 1991, 134, 127-130.	1.0	56
106	Regional distribution of ascorbate and 3,4-dihydroxyphenylacetic acid (DOPAC) in rat striatum. Brain Research, 1991, 538, 29-35.	1.1	46
107	Responses of Motor- and Nonmotor-Related Neostriatal Neurons to Amphetamine and Neuroleptic Drugs. Advances in Behavioral Biology, 1991, , 463-470.	0.2	10
108	Corticostriatal and thalamic regulation of amphetamine-induced ascorbate release in the neostriatum. Pharmacology Biochemistry and Behavior, 1990, 35, 55-60.	1.3	55

#	Article	IF	CITATIONS
109	Intrastriatal infusions of ascorbate antagonize the behavioral response to amphetamine. Pharmacology Biochemistry and Behavior, 1990, 36, 485-489.	1.3	29
110	Stimulation of both D1 and D2 dopamine receptors increases behavioral activation and ascorbate release in the neostriatum of freely moving rats. European Journal of Pharmacology, 1990, 191, 295-302.	1.7	40
111	Amphetamine-induced excitations predominate in single neostriatal neurons showing motor-related activity. Brain Research, 1989, 489, 365-368.	1.1	70
112	Reciprocal zones of excitation and inhibition in the neostriatum. Synapse, 1988, 2, 633-635.	0.6	29
113	Heterogenous responses of neostriatal neurons to amphetamine in freely moving rats. Brain Research, 1988, 463, 268-274.	1.1	72
114	Dopaminergic neurons: simultaneous measurements of dopamine release and single-unit activity during stimulation of the medial forebrain bundle. Brain Research, 1987, 418, 122-128.	1.1	80
115	Multiple amphetamine injections reduce the release of ascorbic acid in the neostriatum of the rat. Brain Research, 1986, 362, 331-338.	1.1	37
116	Crus cerebri lesions abolish amphetamine-induced ascorbate release in the rat neostriatum. Brain Research, 1986, 370, 393-396.	1.1	24
117	Nigral reticulata neurons: potentiation of reponsiveness to amphetamine with long-term treatment. Brain Research, 1985, 332, 188-193.	1.1	25
118	Modulation of neostriatal activity by iontophoresis of ascorbic acid. Brain Research, 1985, 344, 181-185.	1.1	59
119	Critical issues in assessing the behavioral effects of amphetamine. Neuroscience and Biobehavioral Reviews, 1984, 8, 153-159.	2.9	142
120	Simultaneous electrochemical and unit recording measurements: Characterization of the effects of d-amphetamine and ascorbic acid on neostriatal neurons. Brain Research, 1983, 261, 101-108.	1.1	84
121	"Classical―and "atypical―antipsychotic drugs: Differential antagonism of amphetamine- and apomorphine-induced alterations of spontaneous neuronal activity in the neostriatum and nucleus accumbens. Pharmacology Biochemistry and Behavior, 1979, 11, 529-538.	1.3	43
122	Dose-dependent biphasic alterations in the spontaneous activity of neurons in the rat neostriatum produced by D-amphetamine and methylphenidate. Brain Research, 1978, 150, 353-366.	1.1	57
123	Differential effects of the optical isomers of amphetamine on neuronal activity in the reticular formation and caudate nucleus of the rat. Brain Research, 1975, 83, 301-318.	1.1	48