Takeshi Kuroda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9474241/publications.pdf Version: 2024-02-01

TAKESHI KUDODA

#	Article	IF	CITATIONS
1	Loss of the Martian atmosphere to space: Present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus, 2018, 315, 146-157.	2.5	216
2	Highâ€∎ltitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophysical Research Letters, 2015, 42, 8993-9000.	4.0	79
3	Simulation of the Martian Atmosphere Using a CCSR/NIES AGCM. Journal of the Meteorological Society of Japan, 2005, 83, 1-19.	1.8	75
4	Global distribution and parameter dependences of gravity wave activity in the Martian upper thermosphere derived from MAVEN/NGIMS observations. Journal of Geophysical Research: Space Physics, 2017, 122, 2374-2397.	2.4	66
5	Description and climatology of a new general circulation model of the Martian atmosphere. Journal of Geophysical Research, 2005, 110, .	3.3	63
6	General circulation modeling of the Martian upper atmosphere during global dust storms. Journal of Geophysical Research E: Planets, 2013, 118, 2234-2246.	3.6	49
7	Seasonal changes of the baroclinic wave activity in the northern hemisphere of Mars simulated with a GCM. Geophysical Research Letters, 2007, 34, .	4.0	37
8	Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars. Geophysical Research Letters, 2013, 40, 1484-1488.	4.0	35
9	Comparison of the Martian thermospheric density and temperature from IUVS/MAVEN data and general circulation modeling. Geophysical Research Letters, 2016, 43, 3095-3104.	4.0	34
10	On Forcing the Winter Polar Warmings in the Martian Middle Atmosphere during Dust Storms. Journal of the Meteorological Society of Japan, 2009, 87, 913-921.	1.8	28
11	Gravity Wave Activity in the Atmosphere of Mars During the 2018 Global Dust Storm: Simulations With a Highâ€Resolution Model. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006556.	3.6	27
12	A global view of gravity waves in the Martian atmosphere inferred from a highâ€resolution general circulation model. Geophysical Research Letters, 2015, 42, 9213-9222.	4.0	24
13	A coupled atmosphere–hydrosphere global climate model of early Mars: A â€~cool and wet' scenario for the formation of water channels. Icarus, 2020, 338, 113567.	2.5	24
14	Influence of dust on the dynamics of the martian atmosphere above the first scale height. Aeolian Research, 2011, 3, 145-156.	2.7	23
15	Semiannual oscillations in the atmosphere of Mars. Geophysical Research Letters, 2008, 35, .	4.0	22
16	Annual Cycle of Gravity Wave Activity Derived From a Highâ€Resolution Martian General Circulation Model. Journal of Geophysical Research E: Planets, 2019, 124, 1618-1632.	3.6	21
17	Global Distribution of Gravity Wave Sources and Fields in the Martian Atmosphere during Equinox and Solstice Inferred from a High-Resolution General Circulation Model. Journals of the Atmospheric Sciences, 2016, 73, 4895-4909.	1.7	20
18	Overview of the Martian atmospheric submillimetre sounder FIRE. Planetary and Space Science, 2012, 63-64, 62-82.	1.7	18

Takeshi Kuroda

#	Article	IF	CITATIONS
19	Vertical Propagation of Wave Perturbations in the Middle Atmosphere on Mars by MAVEN/IUVS. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006481.	3.6	18
20	Global climate and river transport simulations of early Mars around the Noachian and Hesperian boundary. Icarus, 2021, 368, 114618.	2.5	16
21	Modeling the Hydrological Cycle in the Atmosphere of Mars: Influence of a Bimodal Size Distribution of Aerosol Nucleation Particles. Journal of Geophysical Research E: Planets, 2018, 123, 508-526.	3.6	14
22	Parameterization of radiative heating and cooling rates in the stratosphere of Jupiter. Icarus, 2014, 242, 149-157.	2.5	13
23	Dust storm and electron density in the equatorial <i>D</i> region ionosphere of Mars: Comparison with Earth's ionosphere from rocket measurements in Brazil. Journal of Geophysical Research: Space Physics, 2015, 120, 8968-8977.	2.4	10
24	General circulation modeling of the Martian upper atmosphere during global dust storms. Journal of Geophysical Research E: Planets, 2013, 118, n/a-n/a.	3.6	10
25	A Warm Layer in the Nightside Mesosphere of Mars. Geophysical Research Letters, 2020, 47, e2019GL085646.	4.0	9
26	Generation of gravity waves from thermal tides in the Venus atmosphere. Nature Communications, 2021, 12, 3682.	12.8	9
27	Maintenance of zonal wind variability associated with the annular mode on Mars. Geophysical Research Letters, 2007, 34, .	4.0	8
28	Estimation of changes in the composition of the Martian atmosphere caused by CO ₂ condensation from GRS Ar measurements and its application to the rederivation of MGS radio occultation measurements. Journal of Geophysical Research E: Planets, 2014, 119, 2510-2521.	3.6	8
29	Mars submillimeter sensor on microsatellite: sensor feasibility study. Geoscientific Instrumentation, Methods and Data Systems, 2018, 7, 331-341.	1.6	6
30	Stability of Atmospheric Redox States of Early Mars Inferred from Time Response of the Regulation of H and O Losses. Astrophysical Journal, 2021, 912, 135.	4.5	6
31	Impact of dust loading on ozone, winds and heating rates in the atmosphere of mars: Seasonal variability, climatology and SPICAM observations. Planetary and Space Science, 2022, 212, 105424.	1.7	5
32	Role of stationary and transient waves in CO ₂ supersaturation during northern winter in the Martian atmosphere revealed by MCS radio occultation measurements. Journal of Geophysical Research E: Planets, 2017, 122, 912-926.	3.6	4
33	Intense Zonal Wind in the Martian Mesosphere During the 2018 Planetâ€Encircling Dust Event Observed by Groundâ€Based Infrared Heterodyne Spectroscopy. Geophysical Research Letters, 2021, 48, e2021GL092413.	4.0	4
34	Evolution of ice sheets on early Mars with subglacial river systems. Icarus, 2022, 385, 115117.	2.5	4
35	Concept of small satellite UV/visible imaging spectrometer optimized for tropospheric NO2 measurements in air quality monitoring. Acta Astronautica, 2019, 160, 421-432.	3.2	2
36	Evaluation of a method to retrieve temperature and wind velocity profiles of the Venusian nightside mesosphere from mid-infrared CO2 absorption line observed by heterodyne spectroscopy. Earth, Planets and Space, 2020, 72, .	2.5	1

Takeshi Kuroda

#	Article	IF	CITATIONS
37	Observation Capability of a Ground-Based Terahertz Radiometer for Vertical Profiles of Oxygen and Water Abundances in Martian Atmosphere. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	6.3	1
38	Can we constrain the origin of Mars' recurring slope lineae using atmospheric observations?. Icarus, 2022, 371, 114688.	2.5	0
39	MARTIAN ATMOSPHERE DURING THE 2001 GLOBAL DUST STORM: OBSERVATIONS WITH SWAS AND SIMULATIONS WITH A GENERAL CIRCULATION MODEL. , 2006, , 145-154.		0
40	THE MARTIAN ATMOSPHERE AS A SUBMILLIMETER FLUX CALIBRATION SOURCE USING AN OPAQUE MOLECULAR LINE: IMPACTS OF TEMPERATURE ERRORS PROVIDED BY GENERAL CIRCULATION MODELS. , 2009, , 17-23.		0
41	WIND VELOCITIES OF DIFFERENT SEASONS AND DUST OPACITIES ON MARS: COMPARISON BETWEEN MICROWAVE OBSERVATIONS AND SIMULATIONS BY GENERAL CIRCULATION MODELS. , 0, , 261-270.		0