Byung-Kwan Cho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9473741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The transcription unit architecture of the Escherichia coli genome. Nature Biotechnology, 2009, 27, 1043-1049.	17.5	251
2	RNA polymerase mutants found through adaptive evolution reprogram <i>Escherichia coli</i> for optimal growth in minimal media. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20500-20505.	7.1	219
3	The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2). Nature Communications, 2016, 7, 11605.	12.8	201
4	Analysis of the mouse gut microbiome using full-length 16S rRNA amplicon sequencing. Scientific Reports, 2016, 6, 29681.	3.3	178
5	Genome-scale reconstruction of the Lrp regulatory network in <i>Escherichia coli</i> . Proceedings of the United States of America, 2008, 105, 19462-19467.	7.1	169
6	Genome-wide analysis of Fis binding in <i>Escherichia coli</i> indicates a causative role for A-/AT-tracts. Genome Research, 2008, 18, 900-910.	5.5	164
7	High-Level dCas9 Expression Induces Abnormal Cell Morphology in <i>Escherichia coli</i> . ACS Synthetic Biology, 2018, 7, 1085-1094.	3.8	147
8	Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. Journal of Hazardous Materials, 2018, 347, 442-450.	12.4	145
9	Comparative Analysis of Regulatory Elements between Escherichia coli and Klebsiella pneumoniae by Genome-Wide Transcription Start Site Profiling. PLoS Genetics, 2012, 8, e1002867.	3.5	137
10	Revisit of aminotransferase in the genomic era and its application to biocatalysis. Journal of Molecular Catalysis B: Enzymatic, 2005, 37, 47-55.	1.8	122
11	Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nature Communications, 2019, 10, 935.	12.8	114
12	Genome-scale reconstruction of the sigma factor network in Escherichia coli: topology and functional states. BMC Biology, 2014, 12, 4.	3.8	111
13	Applications of CRISPR/Cas System to Bacterial Metabolic Engineering. International Journal of Molecular Sciences, 2018, 19, 1089.	4.1	108
14	Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Computational and Structural Biotechnology Journal, 2020, 18, 1548-1556.	4.1	106
15	Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metabolic Engineering, 2019, 56, 50-59.	7.0	105
16	The PurR regulon in Escherichia coli K-12 MG1655. Nucleic Acids Research, 2011, 39, 6456-6464.	14.5	98
17	ω-Amino Acid:Pyruvate Transaminase from Alcaligenes denitrificans Y2k-2: a New Catalyst for Kinetic Resolution of β-Amino Acids and Amines. Applied and Environmental Microbiology, 2004, 70, 2529-2534.	3.1	92
18	Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renewable and Sustainable Energy Reviews, 2021, 150, 111491.	16.4	91

#	Article	IF	CITATIONS
19	Functional cooperation of the glycine synthase-reductase and Wood–Ljungdahl pathways for autotrophic growth of <i>Clostridium drakei</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7516-7523.	7.1	88
20	Redesigning the substrate specificity of ï‰â€aminotransferase for the kinetic resolution of aliphatic chiral amines. Biotechnology and Bioengineering, 2008, 99, 275-284.	3.3	87
21	Insights into Cell-Free Conversion of CO ₂ to Chemicals by a Multienzyme Cascade Reaction. ACS Catalysis, 2018, 8, 11085-11093.	11.2	87
22	Elucidation of Akkermansia muciniphila Probiotic Traits Driven by Mucin Depletion. Frontiers in Microbiology, 2019, 10, 1137.	3.5	85
23	Deciphering the transcriptional regulatory logic of amino acid metabolism. Nature Chemical Biology, 2012, 8, 65-71.	8.0	83
24	DNA-Assisted Exfoliation of Tungsten Dichalcogenides and Their Antibacterial Effect. ACS Applied Materials & Interfaces, 2016, 8, 1943-1950.	8.0	76
25	Kinetic resolution of (R,S)-sec-butylamine using omega-transaminase fromVibrio fluvialis JS17 under reduced pressure. Biotechnology and Bioengineering, 2004, 87, 772-778.	3.3	75
26	Structural and operational complexity of the <i>Geobacter sulfurreducens</i> genome. Genome Research, 2010, 20, 1304-1311.	5.5	75
27	Comparative Genomics Reveals the Core and Accessory Genomes of Streptomyces Species. Journal of Microbiology and Biotechnology, 2015, 25, 1599-1605.	2.1	72
28	Cloning and Characterization of a Novel β-Transaminase from Mesorhizobium sp. Strain LUK: a New Biocatalyst for the Synthesis of Enantiomerically Pure β-Amino Acids. Applied and Environmental Microbiology, 2007, 73, 1772-1782.	3.1	70
29	Asymmetric synthesis ofL-homophenylalanine by equilibrium-shift using recombinant aromaticL-amino acid transaminase. Biotechnology and Bioengineering, 2003, 83, 226-234.	3.3	68
30	Analysis of the Core Genome and Pan-Genome of Autotrophic Acetogenic Bacteria. Frontiers in Microbiology, 2016, 7, 1531.	3.5	68
31	Determining the Control Circuitry of Redox Metabolism at the Genome-Scale. PLoS Genetics, 2014, 10, e1004264.	3.5	67
32	Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Scientific Data, 2020, 7, 55.	5.3	67
33	Systematic discovery of uncharacterized transcription factors in Escherichia coli K-12 MG1655. Nucleic Acids Research, 2018, 46, 10682-10696.	14.5	65
34	Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces. Journal of Microbiology and Biotechnology, 2019, 29, 667-686.	2.1	64
35	Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP. Nucleic Acids Research, 2018, 46, 2901-2917.	14.5	62
36	lron competition triggers antibiotic biosynthesis in <i>Streptomyces coelicolor</i> during coculture with <i>Myxococcus xanthus</i> . ISME Journal, 2020, 14, 1111-1124.	9.8	60

Byung-Kwan Cho

#	Article	IF	CITATIONS
37	Transcriptional regulation of the fad regulon genes of Escherichia coli by ArcA. Microbiology (United Kingdom), 2006, 152, 2207-2219.	1.8	57
38	Hierarchical Macroporous Particles for Efficient Whole-Cell Immobilization: Application in Bioconversion of Greenhouse Gases to Methanol. ACS Applied Materials & Interfaces, 2019, 11, 18968-18977.	8.0	57
39	Simultaneous synthesis of 2â€phenylethanol and <scp>L</scp> â€homophenylalanine using aromatic transaminase with yeast Ehrlich pathway. Biotechnology and Bioengineering, 2009, 102, 1323-1329.	3.3	53
40	Effects of Light Intensity and Nitrogen Starvation on Glycerolipid, Glycerophospholipid, and Carotenoid Composition in Dunaliella tertiolecta Culture. PLoS ONE, 2013, 8, e72415.	2.5	53
41	PCR-based tandem epitope tagging system forEscherichia coligenome engineering. BioTechniques, 2006, 40, 67-72.	1.8	52
42	Gene Expression Profiling and the Use of Genome-Scale In Silico Models of <i>Escherichia coli</i> for Analysis: Providing Context for Content. Journal of Bacteriology, 2009, 191, 3437-3444.	2.2	51
43	Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresource Technology, 2015, 194, 57-66.	9.6	51
44	Primary transcriptome and translatome analysis determines transcriptional and translational regulatory elements encoded in the Streptomyces clavuligerus genome. Nucleic Acids Research, 2019, 47, 6114-6129.	14.5	49
45	Ageing and rejuvenation models reveal changes in key microbial communities associated with healthy ageing. Microbiome, 2021, 9, 240.	11.1	49
46	A short review of the pinewood nematode, Bursaphelenchus xylophilus. Toxicology and Environmental Health Sciences, 2020, 12, 297-304.	2.1	47
47	Acetogenic bacteria utilize light-driven electrons as an energy source for autotrophic growth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
48	Minimal genome: Worthwhile or worthless efforts toward being smaller?. Biotechnology Journal, 2016, 11, 199-211.	3.5	45
49	Determination of the Genome and Primary Transcriptome of Syngas Fermenting Eubacterium limosum ATCCÂ8486. Scientific Reports, 2017, 7, 13694.	3.3	44
50	Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11096-11101.	7.1	44
51	Adaptive Laboratory Evolution of Eubacterium limosum ATCC 8486 on Carbon Monoxide. Frontiers in Microbiology, 2020, 11, 402.	3.5	44
52	Elucidation of the bacterial communities associated with the harmful microalgae Alexandrium tamarense and Cochlodinium polykrikoides using nanopore sequencing. Scientific Reports, 2018, 8, 5323.	3.3	43
53	Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila. Energy, 2018, 145, 477-485.	8.8	42
54	Valorization of C1 gases to value-added chemicals using acetogenic biocatalysts. Chemical Engineering Journal, 2022, 428, 131325.	12.7	42

#	Article	IF	CITATIONS
55	Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochemistry, 2014, 49, 996-1004.	3.7	39
56	Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using coupled transaminase reactions. Biotechnology and Bioengineering, 2003, 81, 783-789.	3.3	38
57	Genome-wide transcriptome analysis revealed organelle specific responses to temperature variations in algae. Scientific Reports, 2016, 6, 37770.	3.3	38
58	Genome Engineering of <i>Eubacterium limosum</i> Using Expanded Genetic Tools and the CRISPR-Cas9 System. ACS Synthetic Biology, 2019, 8, 2059-2068.	3.8	38
59	Effect of Ethephon as an Ethylene-Releasing Compound on the Metabolic Profile of <i>Chlorella vulgaris</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 4807-4816.	5.2	37
60	Emerging applications of bacteria as antitumor agents. Seminars in Cancer Biology, 2022, 86, 1014-1025.	9.6	37
61	Genome-scale analysis of syngas fermenting acetogenic bacteria reveals the translational regulation for its autotrophic growth. BMC Genomics, 2018, 19, 837.	2.8	36
62	Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in Escherichia coli K-12 MG1655. Scientific Reports, 2017, 7, 2181.	3.3	35
63	Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals. International Journal of Molecular Sciences, 2020, 21, 7639.	4.1	35
64	Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in <i>Streptomyces</i> genomes. Natural Product Reports, 2021, 38, 1330-1361.	10.3	35
65	Multiple-omic data analysis of Klebsiella pneumoniae MGH 78578 reveals its transcriptional architecture and regulatory features. BMC Genomics, 2012, 13, 679.	2.8	34
66	Genome-wide primary transcriptome analysis of H2-producing archaeon Thermococcus onnurineus NA1. Scientific Reports, 2017, 7, 43044.	3.3	32
67	Targeted Gene Deletion Using DNA-Free RNA-Guided Cas9 Nuclease Accelerates Adaptation of CHO Cells to Suspension Culture. ACS Synthetic Biology, 2016, 5, 1211-1219.	3.8	30
68	Unraveling the functions of uncharacterized transcription factors in <i>Escherichia coli</i> using ChIP-exo. Nucleic Acids Research, 2021, 49, 9696-9710.	14.5	30
69	Microbial regulatory and metabolic networks. Current Opinion in Biotechnology, 2007, 18, 360-364.	6.6	29
70	The architecture of ArgR-DNA complexes at the genome-scale in Escherichia coli. Nucleic Acids Research, 2015, 43, 3079-3088.	14.5	29
71	A Novel Approach for Gene Expression Optimization through Native Promoter and 5′ UTR Combinations Based on RNA-seq, Ribo-seq, and TSS-seq of <i>Streptomyces coelicolor</i> . ACS Synthetic Biology, 2017, 6, 555-565.	3.8	29
72	Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Frontiers in Molecular Biosciences, 2020, 7, 87.	3.5	29

#	Article	IF	CITATIONS
73	Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	29
74	Genome-scale analysis of Methicillin-resistant Staphylococcus aureus USA300 reveals a tradeoff between pathogenesis and drug resistance. Scientific Reports, 2018, 8, 2215.	3.3	28
75	In vitro selection of sialic acid specific RNA aptamer and its application to the rapid sensing of sialic acid modified sugars. Biotechnology and Bioengineering, 2013, 110, 905-913.	3.3	27
76	A multifaceted cellular damage repair and prevention pathway promotes highâ€level tolerance to βâ€lactam antibiotics. EMBO Reports, 2021, 22, e51790.	4.5	26
77	The Transcription Unit Architecture of Streptomyces lividans TK24. Frontiers in Microbiology, 2019, 10, 2074.	3.5	25
78	Engineering Biology to Construct Microbial Chassis for the Production of Difficult-to-Express Proteins. International Journal of Molecular Sciences, 2020, 21, 990.	4.1	25
79	Construction of a minimal genome as a chassis for synthetic biology. Essays in Biochemistry, 2016, 60, 337-346.	4.7	23
80	Synthetic Biology Approaches in the Development of Engineered Therapeutic Microbes. International Journal of Molecular Sciences, 2020, 21, 8744.	4.1	23
81	Simultaneous synthesis of enantiomerically pure (S)-amino acids and (R)-amines using α/ï‰-aminotransferase coupling reactions with two-liquid phase reaction system. Journal of Molecular Catalysis B: Enzymatic, 2003, 26, 273-285.	1.8	22
82	Draft Genome Sequence of Chemolithoautotrophic Acetogenic Butanol-Producing Eubacterium limosum ATCC 8486. Genome Announcements, 2015, 3, .	0.8	21
83	Peptide Transporter CstA Imports Pyruvate in Escherichia coli K-12. Journal of Bacteriology, 2018, 200, .	2.2	21
84	Characterization, stability, and pharmacokinetics of sibutramine/β-cyclodextrin inclusion complex. Journal of Industrial and Engineering Chemistry, 2012, 18, 1412-1417.	5.8	19
85	Genome-scale analysis reveals a role for NdgR in the thiol oxidative stress response in Streptomyces coelicolor. BMC Genomics, 2015, 16, 116.	2.8	19
86	Enzymatic resolution for the preparation of enantiomerically enrichedD-?-heterocyclic alanine derivatives usingEscherichia coli aromaticL-amino acid transaminase. Biotechnology and Bioengineering, 2004, 88, 512-519.	3.3	18
87	Engineering aromaticL-amino acid transaminase for the asymmetric synthesis of constrained analogs ofL-phenylalanine. Biotechnology and Bioengineering, 2006, 94, 842-850.	3.3	18
88	Rational Protein Engineering Guided by Deep Mutational Scanning. International Journal of Molecular Sciences, 2015, 16, 23094-23110.	4.1	18
89	Transcriptome and translatome profiles of Streptomyces species in different growth phases. Scientific Data, 2020, 7, 138.	5.3	18
90	Emerging Tools for Synthetic Genome Design. Molecules and Cells, 2013, 35, 359-370.	2.6	17

Byung-Kwan Cho

#	Article	IF	CITATIONS
91	Determination of single nucleotide variants in Escherichia coli DH5α by using short-read sequencing. FEMS Microbiology Letters, 2015, 362, .	1.8	17
92	Inactivation of a Mismatch-Repair System Diversifies Genotypic Landscape of Escherichia coli During Adaptive Laboratory Evolution. Frontiers in Microbiology, 2019, 10, 1845.	3.5	17
93	A Transcriptome Approach Toward Understanding Fruit Softening in Persimmon. Frontiers in Plant Science, 2017, 8, 1556.	3.6	16
94	Photosynthetic pigment production and metabolic and lipidomic alterations in the marine cyanobacteria Synechocystis sp. PCC 7338 under various salinity conditions. Journal of Applied Phycology, 2021, 33, 197-209.	2.8	16
95	RiboRid: A low cost, advanced, and ultra-efficient method to remove ribosomal RNA for bacterial transcriptomics. PLoS Genetics, 2021, 17, e1009821.	3.5	16
96	Improved bio-hydrogen production by overexpression of glucose-6-phosphate dehydrogenase and FeFe hydrogenase in Clostridium acetobutylicum. International Journal of Hydrogen Energy, 2021, 46, 36687-36695.	7.1	16
97	Engineering Acetogenic Bacteria for Efficient One-Carbon Utilization. Frontiers in Microbiology, 2022, 13, .	3.5	16
98	Current Challenges in Bacterial Transcriptomics. Genomics and Informatics, 2013, 11, 76.	0.8	15
99	Efficient CRISPR/Cas9-mediated multiplex genome editing in CHO cells via high-level sgRNA-Cas9 complex. Biotechnology and Bioprocess Engineering, 2015, 20, 825-833.	2.6	14
100	Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis. Biotechnology and Bioprocess Engineering, 2017, 22, 60-67.	2.6	14
101	Functional role of a novel algicidal compound produced by Pseudoruegeria sp. M32A2M on the harmful algae Alexandrium catenella. Chemosphere, 2022, 300, 134535.	8.2	14
102	Exploring the Functional Residues in a Flavin-Binding Fluorescent Protein Using Deep Mutational Scanning. PLoS ONE, 2014, 9, e97817.	2.5	13
103	Microbial production of nematicidal agents for controlling plant-parasitic nematodes. Process Biochemistry, 2021, 108, 69-79.	3.7	13
104	Engineering Bacteroides thetaiotaomicron to produce non-native butyrate based on a genome-scale metabolic model-guided design. Metabolic Engineering, 2021, 68, 174-186.	7.0	13
105	Poly-3-hydroxybutyrate production in acetate minimal medium using engineered Methylorubrum extorquens AM1. Bioresource Technology, 2022, 353, 127127.	9.6	13
106	Asymmetric synthesis of unnaturall-amino acids using thermophilic aromaticl-amino acid transaminase. Biotechnology and Bioprocess Engineering, 2006, 11, 299-305.	2.6	12
107	Draft Genome Sequence of Acid-Tolerant Clostridium drakei SL1 ^T , a Potential Chemical Producer through Syngas Fermentation. Genome Announcements, 2014, 2, .	0.8	12
108	Fabrication of three-dimensional porous carbon scaffolds with tunable pore sizes for effective cell confinement. Carbon, 2018, 130, 814-821.	10.3	12

#	Article	IF	CITATIONS
109	Adaptive laboratory evolution of Escherichia coli W enhances gamma-aminobutyric acid production using glycerol as the carbon source. Metabolic Engineering, 2022, 69, 59-72.	7.0	12
110	Streptomyces as Microbial Chassis for Heterologous Protein Expression. Frontiers in Bioengineering and Biotechnology, 2021, 9, 804295.	4.1	12
111	The Bitome: digitized genomic features reveal fundamental genome organization. Nucleic Acids Research, 2020, 48, 10157-10163.	14.5	11
112	Comparative Primary Metabolic and Lipidomic Profiling of Freshwater and Marine Synechocystis Strains Using by GC-MS and NanoESI-MS Analyses. Biotechnology and Bioprocess Engineering, 2020, 25, 308-319.	2.6	11
113	Effects of the timing of a culture temperature reduction on the comprehensive metabolite profiles of Chlorella vulgaris. Journal of Applied Phycology, 2016, 28, 2641-2650.	2.8	10
114	Genome-scale analysis of <i>Acetobacterium bakii</i> reveals the cold adaptation of psychrotolerant acetogens by post-transcriptional regulation. Rna, 2018, 24, 1839-1855.	3.5	10
115	Improved production of clavulanic acid by reverse engineering and overexpression of the regulatory genes in an industrial Streptomyces clavuligerus strain. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1205-1215.	3.0	10
116	System-level understanding of gene expression and regulation for engineering secondary metabolite production in <i>Streptomyces</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 739-752.	3.0	10
117	Future trends in synthetic biology in Asia. Genetics & Genomics Next, 2021, 2, e10038.	1.5	10
118	Genomewide Identification of Protein Binding Locations Using Chromatin Immunoprecipitation Coupled with Microarray. Methods in Molecular Biology, 2008, 439, 131-145.	0.9	10
119	A genome-scale metabolic model of Cupriavidus necator H16 integrated with TraDIS and transcriptomic data reveals metabolic insights for biotechnological applications. PLoS Computational Biology, 2022, 18, e1010106.	3.2	10
120	Deciphering the regulatory codes in bacterial genomes. Biotechnology Journal, 2011, 6, 1052-1063.	3.5	9
121	Comparative Lipidomic Profiling of Two <i>Dunaliella tertiolecta</i> Strains with Different Growth Temperatures under Nitrate-Deficient Conditions. Journal of Agricultural and Food Chemistry, 2015, 63, 880-887.	5.2	9
122	Genome analysis of a hyper acetoneâ€butanolâ€ethanol (ABE) producing <i>Clostridium acetobutylicum</i> BKM19. Biotechnology Journal, 2017, 12, 1600457.	3.5	9
123	Phycobiliproteins Production Enhancement and Lipidomic Alteration by Titanium Dioxide Nanoparticles in <i>Synechocystis</i> sp. PCC 6803 Culture. Journal of Agricultural and Food Chemistry, 2018, 66, 8522-8529.	5.2	9
124	Docking Simulation and Sandwich Assay for Aptamer-Based Botulinum Neurotoxin Type C Detection. Biosensors, 2020, 10, 98.	4.7	9
125	Comparative Genomics Determines Strain-Dependent Secondary Metabolite Production in Streptomyces venezuelae Strains. Biomolecules, 2020, 10, 864.	4.0	9
126	STATR: A simple analysis pipeline of Ribo-Seq in bacteria. Journal of Microbiology, 2020, 58, 217-226.	2.8	9

8

#	Article	IF	CITATIONS
127	Mini review: Enzyme-based DNA synthesis and selective retrieval for data storage. Computational and Structural Biotechnology Journal, 2021, 19, 2468-2476.	4.1	9
128	proChIPdb: a chromatin immunoprecipitation database for prokaryotic organisms. Nucleic Acids Research, 2022, 50, D1077-D1084.	14.5	9
129	Synthesis of Enantiopure (S)-2-Hydroxyphenylbutanoic Acid Using Novel Hydroxy Acid Dehydrogenase from Enterobacter sp. BK2K. Biotechnology Progress, 2008, 23, 606-612.	2.6	8
130	Draft Genome Sequence of Clostridium scatologenes ATCC 25775, a Chemolithoautotrophic Acetogenic Bacterium Producing 3-Methylindole and 4-Methylphenol. Genome Announcements, 2014, 2,	0.8	8
131	An automated high-throughput sample preparation method using double-filtration for serum metabolite LC-MS analysis. Analytical Methods, 2019, 11, 4060-4065.	2.7	8
132	Genome-Scale Analysis of Acetobacterium woodii Identifies Translational Regulation of Acetogenesis. MSystems, 2021, 6, e0069621.	3.8	8
133	Development of CO gas conversion system using high CO tolerance biocatalyst. Chemical Engineering Journal, 2022, 449, 137678.	12.7	8
134	Targeted Genome Editing Using DNA-Free RNA-Guided Cas9 Ribonucleoprotein for CHO Cell Engineering. Methods in Molecular Biology, 2018, 1772, 151-169.	0.9	7
135	Aptamer-linked immobilized sorbent assay for detecting GMO marker, phosphinothricin acetyltransferase (PAT). Molecular and Cellular Toxicology, 2020, 16, 253-261.	1.7	7
136	Biochemical characterization and molecular docking analysis of novel esterases from Sphingobium chungbukense DJ77. International Journal of Biological Macromolecules, 2021, 168, 403-411.	7.5	7
137	Development of highly characterized genetic bioparts for efficient gene expression in CO2-fixing Eubacterium limosum. Metabolic Engineering, 2022, 72, 215-226.	7.0	7
138	Different Regulatory Modes of <i>Synechocystis</i> sp. PCC 6803 in Response to Photosynthesis Inhibitory Conditions. MSystems, 2021, 6, e0094321.	3.8	7
139	Selection of Escherichia coli Glutamate Decarboxylase Active at Neutral pH from a Focused Library. Biotechnology and Bioprocess Engineering, 2018, 23, 473-479.	2.6	6
140	Multi-Omic Analyses Reveal Habitat Adaptation of Marine Cyanobacterium Synechocystis sp. PCC 7338. Frontiers in Microbiology, 2021, 12, 667450.	3.5	6
141	Elucidating the Regulatory Elements for Transcription Termination and Posttranscriptional Processing in the Streptomyces clavuligerus Genome. MSystems, 2021, 6, .	3.8	6
142	Genome-scale determination of 5´ and 3´ boundaries of RNA transcripts in Streptomyces genomes. Scientific Data, 2020, 7, 436.	5.3	6
143	Sensitive and accurate identification of protein-DNA binding events in ChIP-chip assays using higher order derivative analysis. Nucleic Acids Research, 2011, 39, 1656-1665.	14.5	5
144	Proteomic analysis of Synechocystis sp. PCC6803 responses to low-temperature and high light conditions. Biotechnology and Bioprocess Engineering, 2014, 19, 629-640.	2.6	5

#	Article	IF	CITATIONS
145	Draft Genome Sequence of Acetobacterium bakii DSM 8239, a Potential Psychrophilic Chemical Producer through Syngas Fermentation. Genome Announcements, 2015, 3, .	0.8	5
146	Elucidation of bacterial translation regulatory networks. Current Opinion in Systems Biology, 2017, 2, 84-90.	2.6	5
147	3D Printed Bioresponsive Devices with Selective Permeability Inspired by Eggshell Membrane for Effective Biochemical Conversion. ACS Applied Materials & Interfaces, 2020, 12, 30112-30119.	8.0	5
148	Reconstitution of antibiotics glycosylation by domain exchanged chimeric glycosyltransferase. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 29-35.	1.8	4
149	Automatic protein structure prediction system enabling rapid and accurate model building for enzyme screening. Enzyme and Microbial Technology, 2009, 45, 218-225.	3.2	4
150	A versatile PCR-based tandem epitope tagging system for Streptomyces coelicolor genome. Biochemical and Biophysical Research Communications, 2012, 424, 22-27.	2.1	4
151	Draft Genome Sequence of Clostridium aceticum DSM 1496, a Potential Butanol Producer through Syngas Fermentation. Genome Announcements, 2015, 3, .	0.8	4
152	mRNA Engineering for the Efficient Chaperone-Mediated Co-Translational Folding of Recombinant Proteins in Escherichia coli. International Journal of Molecular Sciences, 2019, 20, 3163.	4.1	4
153	Comparative Proteomic Profiling of Marine and Freshwater Synechocystis Strains Using Liquid Chromatography-Tandem Mass Spectrometry. Journal of Marine Science and Engineering, 2020, 8, 790.	2.6	4
154	Transcriptome and translatome of CO2 fixing acetogens under heterotrophic and autotrophic conditions. Scientific Data, 2021, 8, 51.	5.3	4
155	Elucidation of the Algicidal Mechanism of the Marine Bacterium Pseudoruegeria sp. M32A2M Against the Harmful Alga Alexandrium catenella Based on Time-Course Transcriptome Analysis. Frontiers in Marine Science, 2021, 8, .	2.5	4
156	Can the Protein Occupancy Landscape Show the Topologically Isolated Chromosomal Domains in the E.Âcoli Genome?: An Exciting Prospect. Molecular Cell, 2009, 35, 255-256.	9.7	3
157	Wax-printed well pads and colorimetric LAMP detection of ApxIA toxin gene. Molecular and Cellular Toxicology, 2020, 16, 263-270.	1.7	3
158	Synthetic 3′-UTR valves for optimal metabolic flux control in <i>Escherichia coli</i> . Nucleic Acids Research, 2022, 50, 4171-4186.	14.5	3
159	Probing the basis for genotype-phenotype relationships. Nature Methods, 2009, 6, 565-566.	19.0	2
160	Elucidation of bacterial genome complexity using next-generation sequencing. Biotechnology and Bioprocess Engineering, 2012, 17, 887-899.	2.6	2
161	Reconstruction of Acetogenesis Pathway Using Short-Read Sequencing of <i>Clostridium aceticum</i> Genome. Journal of Nanoscience and Nanotechnology, 2015, 15, 3852-3861.	0.9	2
162	Functional elucidation of the non-coding RNAs of Kluyveromyces marxianus in the exponential growth phase. BMC Genomics, 2016, 17, 154.	2.8	2

#	Article	IF	CITATIONS
163	Re-classification of Streptomyces venezuelae strains and mining secondary metabolite biosynthetic gene clusters. IScience, 2021, 24, 103410.	4.1	2
164	Genome-scale analysis of genetic regulatory elements in Streptomyces avermitilis MA-4680 using transcript boundary information. BMC Genomics, 2022, 23, 68.	2.8	2
165	Comparative genomic analysis of Streptomyces rapamycinicus NRRL 5491 and its mutant overproducing rapamycin. Scientific Reports, 2022, 12, .	3.3	2
166	Removal of Trans-2-nonenal Using Hen Egg White Lysosomal-Related Enzymes. Molecular Biotechnology, 2020, 62, 380-386.	2.4	1
167	System-Level Analysis of Transcriptional and Translational Regulatory Elements in Streptomyces griseus. Frontiers in Bioengineering and Biotechnology, 2022, 10, 844200.	4.1	1
168	Comprehensive 16S rRNA and metagenomic data from the gut microbiome of aging and rejuvenation mouse models. Scientific Data, 2022, 9, 197.	5.3	1
169	Reactivation maintains LTP at CS inputs to the lateral amygdala enabling selective fear memory persistence. IBRO Reports, 2019, 6, S311-S312.	0.3	0
170	Construction of Minimal Genomes and Synthetic Cells. , 2020, , 45-67.		0
171	Systems Biology on Acetogenic Bacteria for Utilizing C1 Feedstocks. Advances in Biochemical Engineering/Biotechnology, 2022, , 1.	1.1	0