
Bernd Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9473620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Glucosinolate Metabolism Pathway in Living Plant Cells Mediates Broad-Spectrum Antifungal Defense. Science, 2009, 323, 101-106.	12.6	927
2	Symbiotic streptomycetes provide antibiotic combination prophylaxis for wasp offspring. Nature Chemical Biology, 2010, 6, 261-263.	8.0	323
3	Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry, 2002, 59, 663-671.	2.9	226
4	Matrixâ€free UVâ€laser desorption/ionization (LDI) mass spectrometric imaging at the singleâ€cell level: distribution of secondary metabolites of <i>Arabidopsis thaliana</i> and <i>Hypericum</i> species. Plant Journal, 2009, 60, 907-918.	5.7	188
5	Structural Complexity, Differential Response to Infection, and Tissue Specificity of Indolic and Phenylpropanoid Secondary Metabolism in Arabidopsis Roots. Plant Physiology, 2005, 138, 1058-1070.	4.8	179
6	Analysis of cannabinoids in laser-microdissected trichomes of medicinal Cannabis sativa using LCMS and cryogenic NMR. Phytochemistry, 2013, 87, 51-59.	2.9	174
7	Jasmonate and ppHsystemin Regulate Key Malonylation Steps in the Biosynthesis of 17-Hydroxygeranyllinalool Diterpene Glycosides, an Abundant and Effective Direct Defense against Herbivores in <i>Nicotiana attenuata</i> Â. Plant Cell, 2010, 22, 273-292.	6.6	170
8	Resistance of Australian <i>Helicoverpa armigera</i> to fenvalerate is due to the chimeric P450 enzyme CYP337B3. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15206-15211.	7.1	166
9	A Common Fungal Associate of the Spruce Bark Beetle Metabolizes the Stilbene Defenses of Norway Spruce Â. Plant Physiology, 2013, 162, 1324-1336.	4.8	150
10	Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry, 2004, 65, 691-699.	2.9	146
11	Phenalenone-type phytoalexins mediate resistance of banana plants (<i>Musa</i> spp.) to the burrowing nematode <i>Radopholus similis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 105-110.	7.1	130
12	Two Herbivore-Induced Cytochrome P450 Enzymes CYP79D6 and CYP79D7 Catalyze the Formation of Volatile Aldoximes Involved in Poplar Defense A. Plant Cell, 2013, 25, 4737-4754.	6.6	104
13	Gene Coexpression Analysis Reveals Complex Metabolism of the Monoterpene Alcohol Linalool in <i>Arabidopsis</i> Flowers Â. Plant Cell, 2013, 25, 4640-4657.	6.6	104
14	Glandular Trichomes of <i>Leucosceptrum canum</i> Harbor Defensive Sesterterpenoids. Angewandte Chemie - International Edition, 2010, 49, 4471-4475.	13.8	102
15	The Methionine Chain Elongation Pathway in the Biosynthesis of Glucosinolates in Eruca sativa (Brassicaceae). Archives of Biochemistry and Biophysics, 2000, 378, 411-419.	3.0	100
16	Xanthohumol metabolites in faeces of rats. Phytochemistry, 2004, 65, 561-570.	2.9	98
17	A Pair of Tabersonine 16-Hydroxylases Initiates the Synthesis of Vindoline in an Organ-Dependent Manner in <i>Catharanthus roseus</i> ÂÂÂ. Plant Physiology, 2013, 163, 1792-1803.	4.8	97
18	Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10304-10309.	7.1	92

#	Article	IF	CITATIONS
19	Protonation of a Neutral (S)-β-Bisabolene Intermediate Is Involved in (S)-β-Macrocarpene Formation by the Maize Sesquiterpene Synthases TPS6 and TPS11. Journal of Biological Chemistry, 2008, 283, 20779-20788.	3.4	89
20	Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell, 2016, 28, tpc.00065.2016.	6.6	87
21	Farinosones Aâ^'C, Neurotrophic Alkaloidal Metabolites from the Entomogenous DeuteromycetePaecilomycesfarinosus. Journal of Natural Products, 2004, 67, 1854-1858.	3.0	85
22	Coronalon: a powerful tool in plant stress physiology. FEBS Letters, 2004, 563, 17-22.	2.8	82
23	Accumulation of Isochorismate-derived 2,3-Dihydroxybenzoic 3-O-β-d-Xyloside in Arabidopsis Resistance to Pathogens and Ageing of Leaves. Journal of Biological Chemistry, 2010, 285, 25654-25665.	3.4	82
24	The first step in the biosynthesis of cocaine in Erythroxylum coca: the characterization of arginine and ornithine decarboxylases. Plant Molecular Biology, 2012, 78, 599-615.	3.9	82
25	A type III polyketide synthase from Wachendorfia thyrsiflora and its role in diarylheptanoid and phenylphenalenone biosynthesis. Planta, 2006, 224, 413-428.	3.2	81
26	Antitrypanosomal alkaloids from Polyalthia suaveolens (Annonaceae): Their effects on three selected glycolytic enzymes of Trypanosoma brucei. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3495-3498.	2.2	81
27	A Poly(A) Ribonuclease Controls the Cellotriose-Based Interaction between <i>Piriformospora indica</i> and Its Host Arabidopsis. Plant Physiology, 2018, 176, 2496-2514.	4.8	79
28	CYP76C1 (Cytochrome P450)-Mediated Linalool Metabolism and the Formation of Volatile and Soluble Linalool Oxides in Arabidopsis Flowers: A Strategy for Defense against Floral Antagonists. Plant Cell, 2015, 27, tpc.15.00399.	6.6	75
29	Plant Micrometabolomics: The Analysis of Endogenous Metabolites Present in a Plant Cell or Tissue. Journal of Proteome Research, 2009, 8, 1694-1703.	3.7	72
30	Metabolic detoxification of capsaicin by UDPâ€glycosyltransferase in three <i>Helicoverpa</i> species. Archives of Insect Biochemistry and Physiology, 2011, 78, 104-118.	1.5	71
31	Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways. Plant Physiology, 2015, 168, 814-827.	4.8	71
32	Stilbenecarboxylate biosynthesis: a new function in the family of chalcone synthase-related proteins. Phytochemistry, 2003, 62, 271-286.	2.9	70
33	Isolation and Functional Characterization of CYP71AJ4 Encoding for the First P450 Monooxygenase of Angular Furanocoumarin Biosynthesis. Journal of Biological Chemistry, 2009, 284, 4776-4785.	3.4	70
34	Identification of spathulenol in <i>Salvia mirzayanii</i> and the immunomodulatory effects. Phytotherapy Research, 2011, 25, 557-562.	5.8	70
35	Staurosporine Derivatives from the AscidianEudistomatoealensisand Its Predatory FlatwormPseudocerossp.â^‡. Journal of Natural Products, 1999, 62, 959-962.	3.0	69
36	Diarylheptanoids and a Monoterpenoid from the Rhizomes of <i>Zingiber officinale</i> : Antioxidant and Cytoprotective Properties. Journal of Natural Products, 2008, 71, 12-17.	3.0	67

#	Article	IF	CITATIONS
37	Cloning and heterologous expression of glycosyltransferases from Malus x domestica and Pyrus communis, which convert phloretin to phloretin 2′-O-glucoside (phloridzin). Plant Science, 2010, 178, 299-306.	3.6	66
38	ldentification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.). Phytochemistry, 2015, 115, 89-98.	2.9	65
39	Phenalenone-Type Compounds from Musa acuminata var. "Yangambi km 5―(AAA) and Their Activity against Mycosphaerella fijiensis. Journal of Natural Products, 2007, 70, 887-890.	3.0	64
40	Specific accumulation and revised structures of acridone alkaloid glucosides in the tips of transformed roots of Ruta graveolens. Phytochemistry, 2004, 65, 1095-1100.	2.9	61
41	Microchemical analysis of laser-microdissected stone cells of Norway spruce by cryogenic nuclear magnetic resonance spectroscopy. Planta, 2007, 225, 771-779.	3.2	60
42	Production of rosmarinic acid and a new rosmarinic acid 3â€2-O-Î2-D-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton. Planta, 2006, 223, 369-373.	3.2	59
43	An independent occurrence of the chimeric P450 enzyme CYP337B3 of Helicoverpa armigera confers cypermethrin resistance in Pakistan. Insect Biochemistry and Molecular Biology, 2014, 53, 54-65.	2.7	59
44	(+)-N-Deoxymilitarinone A, a Neuritogenic Pyridone Alkaloid from the Insect Pathogenic FungusPaecilomycesfarinosus#. Journal of Natural Products, 2006, 69, 436-438.	3.0	58
45	Laser microdissection and cryogenic nuclear magnetic resonance spectroscopy: an alliance for cell type-specific metabolite profiling. Planta, 2007, 225, 763-770.	3.2	57
46	Determination of brassinosteroids in the sub-femtomolar range using dansyl-3-aminophenylboronate derivatization and electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 2004, 18, 816-821.	1.5	53
47	The Elusive Indigo Precursors in Woad (Isatis tinctoria L.)– Identification of the Major Indigo Precursor, Isatan A, and a Structure Revision of Isatan B. Chemistry and Biodiversity, 2004, 1, 174-182.	2.1	53
48	Flavonols and an indole alkaloid skeleton bearing identical acylated glycosidic groups from yellow petals of Papaver nudicaule. Phytochemistry, 2006, 67, 191-201.	2.9	53
49	Peltate Glandular Trichomes of <i>Colquhounia coccinea</i> var. <i>mollis</i> Harbor a New Class of Defensive Sesterterpenoids. Organic Letters, 2013, 15, 1694-1697.	4.6	53
50	Identity of a Tilapia Pheromone Released by Dominant Males that Primes Females for Reproduction. Current Biology, 2014, 24, 2130-2135.	3.9	53
51	Localization of Phenolics in Phloem Parenchyma Cells of Norway Spruce (<i>Picea abies</i>). ChemBioChem, 2012, 13, 2707-2713.	2.6	49
52	A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C ₂₅) Formation in the Glandular Trichomes of the Mint Species <i>Leucosceptrum canum</i> . Plant Cell, 2016, 28, 804-822.	6.6	48
53	Secondary metabolites from Calotropis procera (Aiton). Phytochemistry Letters, 2010, 3, 212-216.	1.2	47
54	A <scp>BAHD</scp> acyltransferase catalyzing 19â€ <i>O</i> â€acetylation of tabersonine derivatives in roots of <i>Catharanthus roseus</i> enables combinatorial synthesis of monoterpene indole alkaloids. Plant Journal, 2018, 94, 469-484.	5.7	46

#	Article	IF	CITATIONS
55	Biosynthesis of sesquiterpenoid cyclohexenone derivatives in mycorrhizal barley roots proceeds via the glyceraldehyde 3-phosphate/pyruvate pathway. Tetrahedron Letters, 1998, 39, 521-524.	1.4	45
56	HPLC-NMR analysis of phenylphenalenones and a stilbene from Anigozanthos flavidus1Dedicated to Professor Günter Adam on the occasion of his sixty-fifth birthday.1. Phytochemistry, 1999, 50, 155-161.	2.9	45
57	Characterization of 3α-Acetyl-11-keto-α-boswellic Acid, a Pentacyclic Triterpenoid Inducing Apoptosisin vitroandin vivo. Planta Medica, 2006, 72, 1285-1289.	1.3	45
58	Tissue-Specific Distribution of Secondary Metabolites in Rapeseed (Brassica napus L.). PLoS ONE, 2012, 7, e48006.	2.5	45
59	A diarylheptanoid intermediate in the biosynthesis of phenylphenalenones in Anigozanthos preissii. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	44
60	Diastereomeric stilbene glucoside dimers from the bark of Norway spruce (Picea abies). Phytochemistry, 2008, 69, 772-782.	2.9	42
61	Phenylphenalenone-Related Compounds:Â Chemotaxonomic Markers of the Haemodoraceae fromXiphidium caeruleum. Journal of Natural Products, 2002, 65, 1122-1130.	3.0	41
62	Spatial and Temporal Localization of Flavonoid Metabolites in Strawberry Fruit (<i>Fragaria</i> ×) Tj ETQq0 C	0 rgBT /Ov	erlock 10 Tf 5
63	Phenylphenalenones from root cultures of Anigozanthos preissii. Phytochemistry, 1997, 45, 87-91.	2.9	39
64	Dihydrocinnamic acids are involved in the biosynthesis of phenylphenalenones in Anigozanthos preissii. Phytochemistry, 1999, 52, 45-53.	2.9	39
65	Glycoside carbamates from benzoxazolin-2(3H)-one detoxification in extracts and exudates of corn roots. Phytochemistry, 2001, 58, 819-825.	2.9	39
66	The Occurrence of Flavonoids and Related Compounds in Flower Sections of Papaver nudicaule. Plants, 2016, 5, 28.	3.5	39
67	Detoxification of hostplant's chemical defence rather than its anti-predator co-option drives β-glucosidase-mediated lepidopteran counteradaptation. Nature Communications, 2015, 6, 8525.	12.8	38
68	Phenalenones fromStrelitzia reginae. Journal of Natural Products, 2000, 63, 1027-1028.	3.0	36
69	Structureâ^'Activity Relationship in the Interaction of Substituted Perinaphthenones with Mycosphaerella fijiensis. Journal of Agricultural and Food Chemistry, 2009, 57, 7417-7421.	5.2	36
70	Histochemical analysis of phenylphenalenone-related compounds in Xiphidium caeruleum (Haemodoraceae). Planta, 2003, 216, 881-889.	3.2	35
71	New sesquiterpene coumarins from the roots of <i>Ferula flabelliloba</i> . Pharmaceutical Biology, 2010, 48, 217-220.	2.9	35
72	The biosynthesis of 8-phenylphenalenones from involves a putative aryl migration step.	2.9	34

The biosynthesis of 8-phenylphena Phytochemistry, 2005, 66, 59-64.

#	Article	IF	CITATIONS
73	Identification of blapsins A and B as potent small-molecule 14-3-3 inhibitors from the insect Blaps japanensis. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4179-4181.	2.2	34
74	Variability of phenylpropanoid precursors in the biosynthesis of phenylphenalenones in Anigozanthos preissii. Phytochemistry, 2000, 53, 331-337.	2.9	33
75	Synthesis of [26-2H3]brassinosteroids. Steroids, 2002, 67, 587-595.	1.8	33
76	The Biosynthetic Origin of the Central One-Carbon Unit of Phenylphenalenones inAnigozanthos preissii. Natural Product Research, 1995, 7, 177-182.	0.4	32
77	Phenylphenalenones from Ensete ventricosum. Phytochemistry, 1998, 49, 2155-2157.	2.9	32
78	Biosynthesis and antifungal activity of fungus-induced <i>O</i> -methylated flavonoids in maize. Plant Physiology, 2022, 188, 167-190.	4.8	32
79	Glycine Conjugates in a Lepidopteran Insect Herbivore-The Metabolism of Benzylglucosinolate in the Cabbage White Butterfly, Pieris rapae. ChemBioChem, 2006, 7, 1982-1989.	2.6	31
80	Determination of the absolute configuration of the glucosinolate methyl sulfoxide group reveals a stereospecific biosynthesis of the side chain. Phytochemistry, 2008, 69, 2737-2742.	2.9	30
81	Synthesis of Photopolymerizable Hydrophilic Macromers and Evaluation of Their Applicability as Reactive Resin Components for the Fabrication of Threeâ€Dimensionally Structured Hydrogel Matrices by 2â€Photonâ€Polymerization. Advanced Engineering Materials, 2011, 13, B274.	3.5	30
82	UDP-glucose:(6-methoxy)podophyllotoxin 7-O-glucosyltransferase from suspension cultures of Linum nodiflorum. Phytochemistry, 2008, 69, 374-381.	2.9	29
83	Nectar formation and floral nectary anatomy of Anigozanthos flavidus: a combined magnetic resonance imaging and spectroscopy study. Journal of Experimental Botany, 2008, 59, 3425-3434.	4.8	29
84	An <i>α</i> -Acetoxy-Tirucallic Acid Isomer Inhibits Akt/mTOR Signaling and Induces Oxidative Stress in Prostate Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 33-42.	2.5	29
85	Phenylphenalenones protect banana plants from infection by <i>Mycosphaerella fijiensis</i> and are deactivated by metabolic conversion. Plant, Cell and Environment, 2016, 39, 492-513.	5.7	29
86	3-β-d-glucopyranosyl-benzoxazolin-2(3H)-one—A detoxification product of benzoxazolin-2(3H)-one in oat roots. Phytochemistry, 1998, 49, 719-722.	2.9	28
87	Nudicaulins, Yellow Flower Pigments of <i>Papaver nudicaule</i> : Revised Constitution and Assignment of Absolute Configuration. Organic Letters, 2013, 15, 156-159.	4.6	28
88	Kinetics of the incorporation of the main phenolic compounds into the lignan macromolecule during flaxseed development. Food Chemistry, 2017, 217, 1-8.	8.2	28
89	Role of a cytochrome P450-dependent monooxygenase in the hydroxylation of 24-epi-brassinolide. Phytochemistry, 1997, 45, 233-237.	2.9	27
90	Nuclear magnetic resonance spectroscopy in biosynthetic studies. Progress in Nuclear Magnetic Resonance Spectroscopy, 2007, 51, 155-198.	7.5	27

#	Article	IF	CITATIONS
91	Crystallization of α- and β-carotene in the foregut of Spodoptera larvae feeding on a toxic food plant. Insect Biochemistry and Molecular Biology, 2011, 41, 273-281.	2.7	27
92	Biosynthesis of tetraoxygenated phenylphenalenones in Wachendorfia thyrsiflora. Phytochemistry, 2013, 91, 165-176.	2.9	27
93	Laser Microdissection: a Sample Preparation Technique for Plant Micrometabolic Profiling. Phytochemical Analysis, 2014, 25, 307-313.	2.4	27
94	[3,3]-Claisen rearrangements in 24α-methyl steroid synthesis. Steroids, 2002, 67, 597-603.	1.8	26
95	Organ-specific analysis of phenylphenalenone-related compounds in Xiphidium caeruleum. Phytochemistry, 2002, 61, 819-825.	2.9	26
96	Synthesis of [26,27-2H6]brassinosteroids from 23,24-bisnorcholenic acid methyl ester. Steroids, 2004, 69, 617-628.	1.8	26
97	Preparation of (25)- and (25)-26-functionalized steroids as tools for biosynthetic studies of cholic acids. Steroids, 2005, 70, 551-562.	1.8	26
98	Polar secondary metabolites of Ferula persica roots. Phytochemistry, 2008, 69, 473-478.	2.9	26
99	Occurrence of rosmarinic acid, chlorogenic acid and rutin in Marantaceae species. Phytochemistry Letters, 2008, 1, 199-203.	1.2	26
100	Identification of Alternaria alternata Mycotoxins by LC-SPE-NMR and Their Cytotoxic Effects to Soybean (Glycine max) Cell Suspension Culture. Molecules, 2013, 18, 2528-2538.	3.8	26
101	Cytotoxic activity and chemical constituents of <i>Anthemis mirheydari</i> . Pharmaceutical Biology, 2016, 54, 2044-2049.	2.9	26
102	Metabolic inversion of the 3-hydroxy function of brassinosteroids. Phytochemistry, 1998, 48, 467-470.	2.9	25
103	Lignans from Torreya jackii identified by stopped-flow high-performance liquid chromatography–nuclear magnetic resonance spectroscopy. Journal of Chromatography A, 1999, 837, 83-91.	3.7	25
104	Phytochemical profile of aerial parts and roots of Wachendorfia thyrsiflora L. studied by LC-DAD-SPE-NMR. Phytochemistry, 2012, 81, 144-152.	2.9	25
105	Pathways and Enzymes of Brassinosteroid Biosynthesis. Progress in Botany Fortschritte Der Botanik, 2002, , 286-306.	0.3	25
106	Biosynthesis of 2,3-epoxybrassinosteroids in seedlings of Secale cereale. Phytochemistry, 2003, 63, 771-776.	2.9	24
107	A Conifer UDP-Sugar Dependent Glycosyltransferase Contributes to Acetophenone Metabolism and Defense against Insects. Plant Physiology, 2017, 175, 641-651.	4.8	24
108	The CYP71AZ P450 Subfamily: A Driving Factor for the Diversification of Coumarin Biosynthesis in Apiaceous Plants. Frontiers in Plant Science, 2018, 9, 820.	3.6	24

#	Article	IF	CITATIONS
109	Analysis of Underivatized Brassinosteroids by HPLC/APCI-MS. Occurrence of 3-Epibrassinolide in Arabidopsis thaliana. Collection of Czechoslovak Chemical Communications, 2001, 66, 1729-1734.	1.0	23
110	2,3-Epoxybrassinosteroids are intermediates in the biosynthesis of castasterone in seedlings of. Phytochemistry, 2005, 66, 65-72.	2.9	23
111	(8R)-3β,8-Dihydroxypolypoda-13E,17E,21-triene Induces Cell Cycle Arrest and Apoptosis in Treatment-Resistant Prostate Cancer Cells. Journal of Natural Products, 2011, 74, 1731-1736.	3.0	23
112	Correlation between Phenylphenalenone Phytoalexins and Phytopathological Properties in Musa and the Role of a Dihydrophenylphenalene Triol. Molecules, 2002, 7, 331-340.	3.8	22
113	One-dimensional 13C NMR and HPLC-1H NMR techniques for observing carbon-13 and deuterium labelling in biosynthetic studies. Phytochemistry Reviews, 2003, 2, 31-43.	6.5	22
114	Biosynthesis of calystegines: 15N NMR and kinetics of formation in root cultures of Calystegia sepium. Phytochemistry, 2003, 62, 325-332.	2.9	22
115	4-Deoxyaurone Formation in Bidens ferulifolia (Jacq.) DC. PLoS ONE, 2013, 8, e61766.	2.5	22
116	High resolution mass spectrometry imaging reveals the occurrence of phenylphenalenone-type compounds in red paracytic stomata and red epidermis tissue of Musa acuminata ssp. zebrina cv. â€Rowe Red'. Phytochemistry, 2015, 116, 239-245.	2.9	22
117	Duckweed for Human Nutrition: No Cytotoxic and No Anti-Proliferative Effects on Human Cell Lines. Plant Foods for Human Nutrition, 2019, 74, 223-224.	3.2	22
118	Synthesis of hexadeuterated 23-dehydroxybrassinosteroids. Steroids, 2002, 67, 1101-1108.	1.8	21
119	Unique Proline–Benzoquinone Pigment from the Colored Nectar of "Bird's Coca Cola Tree―Functions in Bird Attractions. Organic Letters, 2012, 14, 4146-4149.	4.6	21
120	Biotransformation of Flavokawains A, B, and C, Chalcones from Kava (<i>Piper methysticum</i>), by Human Liver Microsomes. Journal of Agricultural and Food Chemistry, 2015, 63, 6376-6385.	5.2	21
121	4â€Phenylphenalenones as a template for new photodynamic compounds against <i>Mycosphaerella fijiensis</i> . Pest Management Science, 2016, 72, 796-800.	3.4	21
122	Justicidin B 7-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum perenne Himmelszelt involved in the biosynthesis of diphyllin. Phytochemistry, 2007, 68, 2736-2743.	2.9	20
123	Bioactive Metabolites from the Sponge <i>Suberea</i> sp Chemistry and Biodiversity, 2010, 7, 2880-2887.	2.1	20
124	Phenylphenalenones and related natural products from Wachendorfia thyrsiflora L Phytochemistry Letters, 2011, 4, 203-208.	1.2	20
125	Foetithiophenes C-F, thiophene derivatives from the roots of <i>Ferula foetida</i> . Pharmaceutical Biology, 2015, 53, 710-714.	2.9	20
126	Discovery of a Shortâ€Chain Dehydrogenase from <i>Catharanthus roseus</i> that Produces a New Monoterpene Indole Alkaloid. ChemBioChem, 2018, 19, 940-948.	2.6	20

#	Article	IF	CITATIONS
127	Sulfur-containing compounds from the roots of Ferula latisecta and their cytotoxic activities. Fìtoterapìâ, 2018, 124, 108-112.	2.2	20
128	Isomeric Oxabenzochrysenones from Musa Acuminata and Wachendorfia Thyrsiflora. Natural Product Research, 2002, 16, 335-338.	0.4	19
129	Oxidative biosynthesis of phenylbenzoisochromenones from phenylphenalenones. Phytochemistry, 2003, 62, 307-312.	2.9	19
130	Application of Laser-Assisted Microdissection for Tissue and Cell-Specific Analysis of RNA, Proteins, and Metabolites. Progress in Botany Fortschritte Der Botanik, 2008, , 141-167.	0.3	19
131	Metabolic profiling of Musa acuminata challenged with Sporobolomyces salmonicolor. Phytochemistry Letters, 2010, 3, 84-87.	1.2	19
132	The biosynthesis of hydroxycinnamoyl quinate esters and their role in the storage of cocaine in Erythroxylum coca. Phytochemistry, 2013, 91, 177-186.	2.9	19
133	The roots of <i>Salvia rhytidea:</i> a rich source of biologically active diterpenoids. Natural Product Research, 2017, 31, 477-481.	1.8	19
134	Diastereoselective synthesis of the benzoxazinone acetal glucoside ent-GDIMBOA: the first enantiomer of a natural acetal glucoside. Carbohydrate Research, 1997, 298, 147-152.	2.3	18
135	Taxane analysis by high performance liquid chromatography-Nuclear magnetic resonance spectroscopy ofTaxus species. Phytochemical Analysis, 1998, 9, 237-244.	2.4	18
136	Dimeric phenylphenalenones from Musa acuminata and various Haemodoraceae species. Crystal structure of anigorootin. Phytochemistry, 2002, 60, 61-66.	2.9	18
137	Synthesis of New Biosynthetically Important Diarylheptanoids and Their Oxa- and Fluoro- Analogues by Three Different Strategies. Synthetic Communications, 2003, 33, 1019-1045.	2.1	18
138	Synthesis of musafluorone: a naphthoxanthenone isolated from Musa acuminata. Tetrahedron Letters, 2010, 51, 4640-4643.	1.4	18
139	Distribution of Amygdalin in Apricot (Prunus armeniaca) Seeds Studied by Raman Microscopic Imaging. Applied Spectroscopy, 2012, 66, 644-649.	2.2	18
140	Occurrence of nudicaulin structural variants in flowers of papaveraceous species. Phytochemistry, 2013, 92, 105-112.	2.9	18
141	Radical Scavenging Capacity of 2,4-Dihydroxy-9-phenyl-1 <i>H</i> -phenalen-1-one: A Functional Group Exclusion Approach. Organic Letters, 2013, 15, 3542-3545.	4.6	18
142	Abutilon theophrasti's Defense Against the Allelochemical Benzoxazolin-2(3H)-One: Support by Actinomucor elegans. Journal of Chemical Ecology, 2014, 40, 1286-1298.	1.8	18
143	Specific decorations of 17-hydroxygeranyllinalool diterpene glycosides solve the autotoxicity problem of chemical defense in <i>Nicotiana attenuata</i> . Plant Cell, 2021, 33, 1748-1770.	6.6	18
144	Diglycosidic metabolites of 24-epi-teasterone in cell suspension cultures of Lycopersicon esculentum L Phytochemistry, 1997, 46, 1019-1022.	2.9	17

#	Article	IF	CITATIONS
145	Synthesis of Stable Cyclic Sulfinamides with a Hydroperoxy Function by Oxidation of Isothiazolium Salts. Helvetica Chimica Acta, 1999, 82, 685-695.	1.6	17
146	Genetically transformed root cultures — generation, properties and application in plant sciences. , 2006, , 275-314.		17
147	Monolaterol, the First Configurationally Assigned Phenylphenalenone Derivative with a Stereogenic Center at C-9, fromMonochoria elata. Journal of Natural Products, 2006, 69, 1614-1617.	3.0	17
148	Phaseoloidin, a Homogentisic Acid Glucoside from Nicotiana Attenuata Trichomes, Contributes to the Plant's Resistance against Lepidopteran Herbivores. Journal of Chemical Ecology, 2011, 37, 1091-1098.	1.8	17
149	Development of an NMR metabolomics-based tool for selection of flaxseed varieties. Metabolomics, 2014, 10, 1258-1267.	3.0	17
150	Synthesis of Positional Isomeric Phenylphenalenones. Journal of Organic Chemistry, 2017, 82, 3873-3879.	3.2	17
151	Application of the Crystalline Sponge Method to Revise the Structure of the Phenalenone Fuliginone. Molecules, 2017, 22, 211.	3.8	17
152	Synthesis of[phenyl-13C6]lachnanthocarpone and other13C-labelled phenylphenalenones. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 147-159.	1.0	16
153	Highly Oxygenated Sesquiterpene Lactones from <i>Cousinia aitchisonii</i> and their Cytotoxic Properties: Rhaserolide Induces Apoptosis in Human T Lymphocyte (Jurkat) Cells via the Activation of c-Jun <scp>n</scp> -terminal Kinase Phosphorylation. Phytotherapy Research, 2016, 30, 222-226.	5.8	16
154	Isolation and Identification of Intermediates of the Oxidative Bilirubin Degradation. Organic Letters, 2016, 18, 4432-4435.	4.6	16
155	Formation of new, cytocompatible hydrogels based on photochemically crosslinkable levan methacrylates. International Journal of Biological Macromolecules, 2018, 107, 2312-2319.	7.5	16
156	Unusual methyl transfer in the biosynthesis of aporphine and protoberberine alkaloids. Phytochemistry, 1993, 32, 897-903.	2.9	15
157	In-vivo nuclear magnetic resonance spectroscopy of low-molecular-weight compounds in plant cells. Planta, 1997, 203, 1-8.	3.2	15
158	Differentiation-dependent levels of benzofuran-type resveratrol dimers in root cultures of Anigozanthos preissii. Phytochemistry, 2003, 64, 459-462.	2.9	15
159	<i>In vitro</i> inhibitory effects of palmatine from <i>Enantia chlorantha</i> on <i>Trypanosoma cruzi</i> and <i>Leishmania infantum</i> . Natural Product Research, 2009, 23, 1144-1150.	1.8	15
160	Uapaca genus (Euphorbiaceae), a good source of betulinic acid. Fìtoterapìâ, 2009, 80, 32-34.	2.2	15
161	O-Methylation of phenylphenalenone phytoalexins in Musa acuminata and Wachendorfia thyrsiflora. Phytochemistry, 2010, 71, 206-213.	2.9	15
162	Labelling of biogenetic brassinosteroid precursors. Journal of Labelled Compounds and Radiopharmaceuticals, 1998, 41, 131-137.	1.0	14

#	Article	IF	CITATIONS
163	Prenylated Flavonoids and Flavonostilbenes from <i>Sophora pachycarpa</i> . Roots. Pharmaceutical Biology, 2007, 45, 453-457.	2.9	14
164	Synthesis of 4-methoxy-1H-phenalen-1-one: a subunit related to natural phenalenone-type compounds. Tetrahedron Letters, 2008, 49, 3844-3847.	1.4	14
165	Hydroxylation of a hederagenin derived saponin by a Xylareaceous fungus found in fruits of Sapindus saponaria. Journal of the Brazilian Chemical Society, 2008, 19, 831-835.	0.6	14
166	Metabolic Profiling of Lignans and Other Secondary Metabolites from Rapeseed (Brassica napus L.). Journal of Agricultural and Food Chemistry, 2012, 60, 10523-10529.	5.2	14
167	Co-occurrence of phenylphenalenones and flavonoids in Xiphidium caeruleum Aubl. flowers. Phytochemistry, 2012, 82, 143-148.	2.9	14
168	Improved synthesis of 4-phenylphenalenones: the case of isoanigorufone and structural analogs. Tetrahedron Letters, 2013, 54, 351-354.	1.4	14
169	Beetles Do It Differently: Two Stereodivergent Cyclisation Modes in Iridoid-Producing Leaf-Beetle Larvae. ChemBioChem, 2013, 14, 353-360.	2.6	14
170	Idesia polycarpa (Salicaceae) leaf constituents and their toxic effect on Cerura vinula and Lymantria dispar (Lepidoptera) larvae. Phytochemistry, 2017, 143, 170-179.	2.9	14
171	Phenylpropanoid interconversion inAnigozanthos preissii observed by high-performance liquid chromatography-nuclear magnetic resonance spectroscopy. Phytochemical Analysis, 2001, 12, 43-47.	2.4	13
172	Coumarins give misleading absorbance with Ellmanââ,¬â,,¢s reagent suggestive of thiol conjugates. Analyst, The, 2002, 127, 333-336.	3.5	13
173	New Pyridine Alkaloids from Rove Beetles of the Genus Stenus (Coleoptera: Staphylinidae). Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2009, 64, 271-278.	1.4	13
174	Phenolic glucosides from Hasseltia floribunda. Phytochemistry, 2010, 71, 1900-1907.	2.9	13
175	Laser Microdissection and Spatiotemporal Pinoresinol-Lariciresinol Reductase Gene Expression Assign the Cell Layer-Specific Accumulation of Secoisolariciresinol Diglucoside in Flaxseed Coats. Frontiers in Plant Science, 2016, 7, 1743.	3.6	13
176	Cytotoxic diterpenoids from the roots of Salvia lachnocalyx. Revista Brasileira De Farmacognosia, 2017, 27, 475-479.	1.4	13
177	Antidiabetic and cytotoxic polyhydroxylated oleanane and ursane type triterpenoids from Salvia grossheimii. Bioorganic Chemistry, 2020, 104, 104297.	4.1	13
178	Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil. Plants, 2016, 5, 34.	3.5	12
179	Phenylbenzoisoquinolindione alkaloids accumulate in stamens of Xiphidium caeruleum Aubl. flowers. Phytochemistry, 2016, 128, 95-101.	2.9	12
180	Synthesis of 8-Phenylphenalenones: 2-Hydroxy-8-(4-hydroxyphenyl)-1 <i>H</i> -phenalen-1-one from <i>Eichhornia crassipes</i> . Journal of Organic Chemistry, 2016, 81, 1256-1262.	3.2	12

#	Article	IF	CITATIONS
181	Two antiproliferative seco-4,5-abietane diterpenoids from roots of Salvia ceratophylla L Phytochemistry Letters, 2019, 29, 129-133.	1.2	12
182	Induction of 3?-O-?-d-ribofuranosyl adenosine during compatible, but not during incompatible, interactions of Arabidopsis thaliana or Lycopersicon esculentum with Pseudomonas syringae pathovar tomato. Planta, 2004, 218, 668-672.	3.2	11
183	Preparation and synthetic application of partially protected brassinosteroids. Steroids, 2010, 75, 27-33.	1.8	11
184	The Absolute Configuration of Salicortin, HCH-Salicortin and Tremulacin from Populus trichocarpa × deltoides Beaupré. Molecules, 2015, 20, 5566-5573.	3.8	11
185	4-Methoxycinnamic acid – An unusual phenylpropanoid involved in phenylphenalenone biosynthesis in Anigozanthos preissii. Phytochemistry, 2015, 117, 476-481.	2.9	11
186	Unprecedented Utilization of Pelargonidin and Indole for the Biosynthesis of Plant Indole Alkaloids. ChemBioChem, 2016, 17, 318-327.	2.6	11
187	3β-Brassinosteroid dehydrogenase activity in Arabidopsis and tomato. Phytochemistry, 2001, 58, 989-994.	2.9	10
188	HPLC-NMR for tissue-specific analysis of phenylphenalenone-related compounds inXiphidium caeruleum (Haemodoraceae). Magnetic Resonance in Chemistry, 2005, 43, 724-728.	1.9	10
189	NMR-Based Metabolic Profiling of <i>Anigozanthos</i> Floral Nectar. Journal of Natural Products, 2008, 71, 251-257.	3.0	10
190	Persicasulphide C, a new sulphur-containing derivative from <i>Ferula persica</i> . Natural Product Research, 2009, 23, 1584-1588.	1.8	10
191	Antitrypanosomal activity of polycarpol from Piptostigma preussi (Annonaceae). Fìtoterapìâ, 2009, 80, 188-191.	2.2	10
192	C-methylated flavanones and dihydrochalcones from Myrica gale seeds. Biochemical Systematics and Ecology, 2011, 39, 68-70.	1.3	10
193	Biosynthesis of Nudicaulins: A ¹³ CO ₂ â€Pulse/Chase Labeling Study with <i>Papaver nudicaule</i> . ChemBioChem, 2014, 15, 1645-1650.	2.6	10
194	Cultured roots of Xiphidium caeruleum: Phenylphenalenones and their biosynthetic and extractant-dependent conversion. Phytochemistry, 2017, 133, 15-25.	2.9	10
195	Identification of Potential Allelochemicals From Donor Plants and Their Synergistic Effects on the Metabolome of Aegilops geniculata. Frontiers in Plant Science, 2020, 11, 1046.	3.6	10
196	Concentration Kinetics of Secoisolariciresinol Diglucoside and its Biosynthetic Precursor Coniferin in Developing Flaxseed. Phytochemical Analysis, 2013, 24, 41-46.	2.4	9
197	Precursor-Directed Biosynthesis of Phenylbenzoisoquinolindione Alkaloids and the Discovery of a Phenylphenalenone-Based Plant Defense Mechanism. Journal of Natural Products, 2018, 81, 879-884.	3.0	9
198	Acylated Quinic Acids Are the Main Salicortin Metabolites in the Lepidopteran Specialist Herbivore Cerura vinula. Journal of Chemical Ecology, 2018, 44, 497-509.	1.8	9

#	Article	IF	CITATIONS
199	Biosynthetic and Functional Color–Scent Associations in Flowers of <i>Papaver nudicaule</i> and Their Impact on Pollinators. ChemBioChem, 2018, 19, 1553-1562.	2.6	8
200	Flavone C-Glycosides from Isatis tinctoria Leaves. Heterocycles, 2005, 65, 1655.	0.7	8
201	In-vivo nuclear magnetic resonance spectroscopy of low-molecular-weight compounds in plant cells. Planta, 1997, 203, 1-8.	3.2	8
202	Comparative Investigations on the Metabolism of 2-(2,4-Dichlorophenoxy)Isobutyric Acid in Plants and Cell Suspension Cultures of Lycopersicon esculentum. Plant Physiology, 1984, 76, 989-992.	4.8	7
203	The biosynthetic origin of oxygen functions in phenylphenalenones of Anigozanthos preissii inferred from NMR- and HRMS-based isotopologue analysis. Phytochemistry, 2011, 72, 49-58.	2.9	7
204	A qNMR approach for bitterness phenotyping and QTL identification in an F1 apricot progeny. Journal of Biotechnology, 2012, 159, 312-319.	3.8	7
205	Bioassay guided purification of cytotoxic natural products from a red alga Dichotomaria obtusata. Revista Brasileira De Farmacognosia, 2016, 26, 705-709.	1.4	7
206	Differential regulation of jasmonic acid pathways in resistant (Calcutta 4) and susceptible (Williams) banana genotypes during the interaction with Pseudocercospora fijiensis. Plant Pathology, 2020, 69, 872-882.	2.4	7
207	Antileishmanial and pharmacophore modeling of abietane-type diterpenoids extracted from the roots of Salvia hydrangea. Journal of Molecular Structure, 2021, 1228, 129447.	3.6	7
208	Synthesis of [7,7â€ ² H ₂]epibrassinolide. Journal of Labelled Compounds and Radiopharmaceuticals, 2007, 50, 1153-1158.	1.0	6
209	Methyl allyl ether formation in plants: novel S-adenosyl l-methionine:coniferyl alcohol 9-O-methyltransferase from suspension cultures of three Linum species. Plant Molecular Biology, 2007, 64, 279-291.	3.9	6
210	Stereoselective synthesis of 9α-hydroxylated ecdysteroids. Steroids, 2010, 75, 184-188.	1.8	6
211	Diels–Alder reaction of androsta-14,16-dien-17-yl acetates with nitroethylene: Product distribution and selected adduct transformations. Steroids, 2013, 78, 282-287.	1.8	6
212	The Intramolecular Diels-Alder Reaction of Diarylheptanoids — Quantum Chemical Calculation of Structural Features Favoring the Formation of Phenylphenalenones. Molecules, 2014, 19, 5231-5242.	3.8	5
213	Local phytochemical response of Musa acuminataÂ×Âbalbisiana Colla cv. â€ [~] Bluggoe' (ABB) to colonization by Sternorrhyncha. Phytochemistry, 2017, 133, 26-32.	2.9	5
214	Rupestrines A-D, alkaloids from the aerial parts of Corydalis rupestris. Bioorganic Chemistry, 2018, 77, 651-659.	4.1	5
215	Formation of Nudicaulins In Vivo and In Vitro and the Biomimetic Synthesis and Bioactivity of O-Methylated Nudicaulin Derivatives. Molecules, 2018, 23, 3357.	3.8	5
216	Organ-specific distribution and non-enzymatic conversions indicate a metabolic network of phenylphenalenones in Xiphidium caeruleum. Phytochemistry, 2019, 159, 30-38.	2.9	5

#	Article	IF	CITATIONS
217	New sesquiterpene coumarin from the roots of Ferula latisecta. Avicenna Journal of Phytomedicine, 2012, 2, 133-8.	0.2	5
218	Metabolism of the Herbicide 2-(2,4-Dichlorophenoxy)-propionic Acid (Dichlorprop) in Barley (Hordeum) Tj ETQq0	0 0 rgBT / 1.4	Overlock 10

219	A New Type of Modified Brassinosteroids for Enzyme-linked Immunosorbent Assay. Natural Product Communications, 2008, 3, 1934578X0800300.	0.5	4
220	Phenylphenalenone glycosides: Occurrence, structure revision, and substituent effects on the steric orientation. Phytochemistry Letters, 2017, 21, 104-108.	1.2	4
221	Cytotoxic furanosesquiterpenoids and steroids from <i>lrcinia mutans</i> sponges. Pharmaceutical Biology, 2021, 59, 573-581.	2.9	4
222	The Metabolic Diversity of Plant Cell and Tissue Cultures. Progress in Botany Fortschritte Der Botanik, 2001, , 266-304.	0.3	4
223	Metabolism of Amitrole in Apple: I. Soluble Metabolites from Mature Fruits. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1992, 47, 120-125.	1.4	3
224	Synthesis and Protein Binding of (4-Carboxybutyl)carbamoyl- Substituted Taxoids. Helvetica Chimica Acta, 2001, 84, 1989-1995.	1.6	3
225	Reversible Conversion In The Brassinosteroid Quartet Castasterone, Brassinolide And Their 3β-Epimers. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2006, 61, 1039-1044.	0.7	3
226	Solvolysis of 14,17-etheno-bridged 16α-nitroestratrienyl acetate and lactam formation pathways studied by LC–NMR and LC–MS. Structures of minor products. Steroids, 2015, 104, 37-48.	1.8	3
227	Phytochemical profile of Schiekia orinocensis (Haemodoraceae). Phytochemistry Letters, 2017, 21, 139-145.	1.2	3
228	Antiproliferative activity of semisynthetic xylopic acid derivatives. Natural Product Research, 2022, 36, 1288-1295.	1.8	3
229	Cytotoxic abietane-type diterpenoids from roots of <i>Salvia spinosa</i> and their <i>in Silico</i> pharmacophore modeling. Natural Product Research, 2022, 36, 3183-3188.	1.8	3
230	Metabolism of amitrole in apple: III. Model systems. Pest Management Science, 1994, 41, 327-333.	0.4	2
231	Sesquiterpenes and Flavonoids of Anthemis odontostephana var. odontostephana. Chemistry of Natural Compounds, 2015, 51, 491-494.	0.8	2
232	Plectranthus zeylanicus: A Rich Source of Secondary Metabolites with Antimicrobial, Disinfectant and Anti-Inflammatory Activities. Pharmaceuticals, 2022, 15, 436.	3.8	2
233	Metabolism of the bisethyleneglycolesters of 2,4-D and MCPA in barley. Phytochemistry, 1993, 32, 523-526.	2.9	1
234	Metabolism of amitrole in apple: II. Bound residues from mature fruits. Pest Management Science, 1993, 37, 9-13.	0.4	1

#	Article	IF	CITATIONS
235	Chemical Composition and Antimicrobial Activity of Populus nigra Shoot Resin. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	1
236	A new dammarane type triterpene glucoside from the aerial parts of <i>Gouania longipetala</i> (Rhamnaceae). Natural Product Research, 2021, 35, 3192-3203.	1.8	1
237	An Integrated—Omics/Chemistry Approach Unravels Enzymatic and Spontaneous Steps to Form Flavoalkaloidal Nudicaulin Pigments in Flowers of Papaver nudicaule L International Journal of Molecular Sciences, 2021, 22, 4129.	4.1	1
238	Nuclear Magnetic Resonance Spectroscopic Analysis of Enzyme Products. Progress in Botany Fortschritte Der Botanik, 2010, , 183-206.	0.3	1
239	Nuclear Magnetic Resonance Applications to Low-Molecular Metabolites in Plant Sciences. Progress in Botany Fortschritte Der Botanik, 2004, , 301-322.	0.3	1
240	Synthesis of New Biosynthetically Important Diarylheptanoids and Their Oxa- and Fluoro-Analogues by Three Different Strategies ChemInform, 2003, 34, no.	0.0	0