
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9472203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 2010, 4, 1321-1326.	7.3	3,658
2	Metal-Free Catalysts for Oxygen Reduction Reaction. Chemical Reviews, 2015, 115, 4823-4892.	23.0	2,083
3	Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 2012, 8, 1130-1166.	5.2	1,304
4	An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nature Nanotechnology, 2017, 12, 441-446.	15.6	1,271
5	BCN Graphene as Efficient Metalâ€Free Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2012, 51, 4209-4212.	7.2	1,119
6	Nitrogenated holey two-dimensional structures. Nature Communications, 2015, 6, 6486.	5.8	923
7	Polyaniline-Grafted Reduced Graphene Oxide for Efficient Electrochemical Supercapacitors. ACS Nano, 2012, 6, 1715-1723.	7.3	807
8	Polyelectrolyte-Functionalized Graphene as Metal-Free Electrocatalysts for Oxygen Reduction. ACS Nano, 2011, 5, 6202-6209.	7.3	672
9	Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy, 2012, 1, 534-551.	8.2	628
10	Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5588-5593.	3.3	595
11	Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013, 135, 1386-1393.	6.6	578
12	Edgeâ€Selectively Sulfurized Graphene Nanoplatelets as Efficient Metalâ€Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect. Advanced Materials, 2013, 25, 6138-6145.	11.1	537
13	Soluble P3HT-Grafted Graphene for Efficient Bilayerâ~'Heterojunction Photovoltaic Devices. ACS Nano, 2010, 4, 5633-5640.	7.3	451
14	Nanocomposites Derived from Polymers and Inorganic Nanoparticles. Materials, 2010, 3, 3654-3674.	1.3	417
15	Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy and Environmental Science, 2018, 11, 2263-2269.	15.6	405
16	Recent Advances in Noble Metal (Pt, Ru, and Ir)-Based Electrocatalysts for Efficient Hydrogen Evolution Reaction. ACS Omega, 2020, 5, 31-40.	1.6	390
17	Two-dimensional polyaniline (C ₃ N) from carbonized organic single crystals in solid state. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7414-7419.	3.3	380
18	Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nature Communications, 2020, 11, 1278.	5.8	340

#	Article	IF	CITATIONS
19	Nanoporous Graphene Enriched with Fe/Coâ€N Active Sites as a Promising Oxygen Reduction Electrocatalyst for Anion Exchange Membrane Fuel Cells. Advanced Functional Materials, 2016, 26, 2150-2162.	7.8	305
20	Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Scientific Reports, 2013, 3, 1810.	1.6	300
21	2D Frameworks of C ₂ N and C ₃ N as New Anode Materials for Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1702007.	11.1	282
22	Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nature Communications, 2020, 11, 2209.	5.8	281
23	N-Doped Graphene Nanoplatelets as Superior Metal-Free Counter Electrodes for Organic Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 5243-5250.	7.3	238
24	Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horizons, 2020, 5, 43-56.	4.1	223
25	Sulfur–Graphene Nanostructured Cathodes <i>via</i> Ball-Milling for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2014, 8, 10920-10930.	7.3	213
26	Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific Reports, 2013, 3, 2260.	1.6	204
27	Direct Synthesis of a Covalent Triazineâ€Based Framework from Aromatic Amides. Angewandte Chemie - International Edition, 2018, 57, 8438-8442.	7.2	196
28	Edgeâ€Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye‣ensitized Solar Cells and Lithium Ion Batteries. Advanced Functional Materials, 2015, 25, 1170-1179.	7.8	174
29	Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media. Advanced Materials, 2018, 30, e1803676.	11.1	173
30	In Situ Synthesis of Poly(ethylene terephthalate) (PET) in Ethylene Glycol Containing Terephthalic Acid and Functionalized Multiwalled Carbon Nanotubes (MWNTs) as an Approach to MWNT/PET Nanocomposites. Chemistry of Materials, 2005, 17, 5057-5064.	3.2	172
31	Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer, 2006, 47, 8019-8025.	1.8	172
32	Formation of Large-Area Nitrogen-Doped Graphene Film Prepared from Simple Solution Casting of Edge-Selectively Functionalized Graphite and Its Electrocatalytic Activity. Chemistry of Materials, 2011, 23, 3987-3992.	3.2	171
33	Graphene Phosphonic Acid as an Efficient Flame Retardant. ACS Nano, 2014, 8, 2820-2825.	7.3	169
34	Novel Quinoxaline-Based Organic Sensitizers for Dye-Sensitized Solar Cells. Organic Letters, 2011, 13, 3880-3883.	2.4	166
35	Edgeâ€Selectively Halogenated Graphene Nanoplatelets (XGnPs, X = Cl, Br, or I) Prepared by Ballâ€Milling and Used as Anode Materials for Lithiumâ€Ion Batteries. Advanced Materials, 2014, 26, 7317-7323.	11.1	160
36	Electrochemical supercapacitors from conducting polyaniline–graphene platforms. Chemical Communications, 2014, 50, 6298.	2.2	152

#	Article	IF	CITATIONS
37	The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy, 2021, 87, 106162.	8.2	149
38	Graphene and molybdenum disulfide hybrids: synthesis and applications. Materials Today, 2015, 18, 286-298.	8.3	145
39	Mechanochemistry for ammonia synthesis under mild conditions. Nature Nanotechnology, 2021, 16, 325-330.	15.6	141
40	Graphene Nanoplatelets Doped with N at its Edges as Metalâ€Free Cathodes for Organic Dye‣ensitized Solar Cells. Advanced Materials, 2014, 26, 3055-3062.	11.1	140
41	Scalable Production of Edgeâ€Functionalized Graphene Nanoplatelets via Mechanochemical Ballâ€Milling. Advanced Functional Materials, 2015, 25, 6961-6975.	7.8	135
42	Cobalt Oxide Encapsulated in C ₂ N- <i>h</i> 2D Network Polymer as a Catalyst for Hydrogen Evolution. Chemistry of Materials, 2015, 27, 4860-4864.	3.2	131
43	Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nature Communications, 2019, 10, 4060.	5.8	131
44	Defect-Free Encapsulation of Fe ⁰ in 2D Fused Organic Networks as a Durable Oxygen Reduction Electrocatalyst. Journal of the American Chemical Society, 2018, 140, 1737-1742.	6.6	124
45	Controlled growth and modification of vertically-aligned carbon nanotubes for multifunctional applications. Materials Science and Engineering Reports, 2010, 70, 63-91.	14.8	118
46	Fe@C2N: A highly-efficient indirect-contact oxygen reduction catalyst. Nano Energy, 2018, 44, 304-310.	8.2	118
47	Nitrogen-Doped Graphene Nanoplatelets from Simple Solution Edge-Functionalization for n-Type Field-Effect Transistors. Journal of the American Chemical Society, 2013, 135, 8981-8988.	6.6	113
48	High-yield exfoliation of three-dimensional graphite into two-dimensional graphene-like sheets. Chemical Communications, 2010, 46, 6320.	2.2	109
49	Graphene in photovoltaic applications: organic photovoltaic cells (OPVs) and dye-sensitized solar cells (DSSCs). Journal of Materials Chemistry A, 2014, 2, 12136.	5.2	107
50	Exploration of the Effective Location of Surface Oxygen Defects in Grapheneâ€Based Electrocatalysts for Allâ€Vanadium Redoxâ€Flow Batteries. Advanced Energy Materials, 2015, 5, 1401550.	10.2	107
51	Twoâ€Đimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. ChemNanoMat, 2017, 3, 373-391.	1.5	106
52	Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. Nano Letters, 2017, 17, 6385-6390.	4.5	106
53	Edge-halogenated graphene nanoplatelets with F, Cl, or Br as electrocatalysts for all-vanadium redox flow batteries. Nano Energy, 2016, 26, 233-240.	8.2	105
54	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production. Advanced Materials, 2021, 33, e2103266.	11.1	104

#	Article	IF	CITATIONS
55	Graphene Oxide Nanoribbon as Hole Extraction Layer to Enhance Efficiency and Stability of Polymer Solar Cells. Advanced Materials, 2014, 26, 786-790.	11.1	102
56	Macroporous Inverse Opal-like Mo _{<i>x</i>} C with Incorporated Mo Vacancies for Significantly Enhanced Hydrogen Evolution. ACS Nano, 2017, 11, 7527-7533.	7.3	102
57	Abrading bulk metal into single atoms. Nature Nanotechnology, 2022, 17, 403-407.	15.6	102
58	Converting Unstable Imine-Linked Network into Stable Aromatic Benzoxazole-Linked One via Post-oxidative Cyclization. Journal of the American Chemical Society, 2019, 141, 11786-11790.	6.6	100
59	Nitrogenâ€Doped Carbon Nanomaterials: Synthesis, Characteristics and Applications. Chemistry - an Asian Journal, 2020, 15, 2282-2293.	1.7	100
60	Large-Area Graphene Films by Simple Solution Casting of Edge-Selectively Functionalized Graphite. ACS Nano, 2011, 5, 4974-4980.	7.3	98
61	Encapsulating Iridium Nanoparticles Inside a 3D Cageâ€Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction. Advanced Materials, 2018, 30, e1805606.	11.1	98
62	Functionalized graphene nanoplatelets from ball milling for energy applications. Current Opinion in Chemical Engineering, 2016, 11, 52-58.	3.8	89
63	Grafting of Vapor-Grown Carbon Nanofibers via in-Situ Polycondensation of 3-Phenoxybenzoic Acid in Poly(phosphoric acid). Macromolecules, 2004, 37, 8278-8285.	2.2	88
64	Edge-selenated graphene nanoplatelets as durable metal-free catalysts for iodine reduction reaction in dye-sensitized solar cells. Science Advances, 2016, 2, e1501459.	4.7	88
65	Synergistic Coupling Derived Cobalt Oxide with Nitrogenated Holey Two-Dimensional Matrix as an Efficient Bifunctional Catalyst for Metal–Air Batteries. ACS Nano, 2019, 13, 5502-5512.	7.3	87
66	Doped graphene supercapacitors. Nanotechnology, 2015, 26, 492001.	1.3	86
67	Covalent modification of vapour-grown carbon nanofibers via direct Friedel–Crafts acylation in polyphosphoric acid. Journal of Materials Chemistry, 2004, 14, 2052-2056.	6.7	85
68	High-performance dye-sensitized solar cells using edge-halogenated graphene nanoplatelets as counter electrodes. Nano Energy, 2015, 13, 336-345.	8.2	85
69	Edge-functionalized graphene-like platelets as a co-curing agent and a nanoscale additive to epoxy resin. Journal of Materials Chemistry, 2011, 21, 7337.	6.7	84
70	Edge-carboxylated graphene nanoplatelets as oxygen-rich metal-free cathodes for organic dye-sensitized solar cells. Energy and Environmental Science, 2014, 7, 1044-1052.	15.6	82
71	Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst. Small, 2017, 13, 1701167.	5.2	82
72	Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst. Advanced Functional Materials, 2017, 27, 1605717.	7.8	80

#	Article	IF	CITATIONS
73	Graphene based 2D-materials for supercapacitors. 2D Materials, 2015, 2, 032002.	2.0	79
74	Identifying the structure of Zn-N2 active sites and structural activation. Nature Communications, 2019, 10, 2623.	5.8	79
75	Modification of bisphenol-A based bismaleimide resin (BPA-BMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI). Polymer, 2006, 47, 2813-2821.	1.8	77
76	Antimony-doped graphene nanoplatelets. Nature Communications, 2015, 6, 7123.	5.8	77
77	Functionalization of multi-walled carbon nanotubes with various 4-substituted benzoic acids in mild polyphosphoric acid/phosphorous pentoxide. Carbon, 2008, 46, 1850-1859.	5.4	75
78	Nb-doped TiO2 nanoparticles for organic dye-sensitized solar cells. RSC Advances, 2013, 3, 16380.	1.7	75
79	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie - International Edition, 2018, 57, 14139-14143.	7.2	70
80	Enhancing the Photocatalytic Activity of TiO ₂ Catalysts. Advanced Sustainable Systems, 2020, 4, 2000197.	2.7	69
81	Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors. Organic Electronics, 2008, 9, 317-322.	1.4	68
82	Multiwalled carbon nanotubes and nanofibers grafted with polyetherketones in mild and viscous polymeric acid. Polymer, 2006, 47, 1132-1140.	1.8	66
83	Revealing Isolated Mâ^'N ₃ C ₁ Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2020, 59, 23678-23683.	7.2	64
84	Nitrogenâ€Doped Graphene for Photocatalytic Hydrogen Generation. Chemistry - an Asian Journal, 2016, 11, 1125-1137.	1.7	63
85	Direct Solvothermal Synthesis of B/Nâ€Đoped Graphene. Angewandte Chemie - International Edition, 2014, 53, 2398-2401.	7.2	61
86	Simple solution-based synthesis of pyridinic-rich nitrogen-doped graphene nanoplatelets for supercapacitors. Applied Energy, 2017, 195, 1071-1078.	5.1	60
87	Transport behavior of functionalized multi-wall carbon nanotubes in water-saturated quartz sand as a function of tube length. Water Research, 2012, 46, 4521-4531.	5.3	59
88	Electrochemical supercapacitors based on a novel graphene/conjugated polymer composite system. Journal of Materials Chemistry, 2012, 22, 12268.	6.7	59
89	Graphene supported non-precious metal-macrocycle catalysts for oxygen reduction reaction in fuel cells. Nanoscale, 2015, 7, 6991-6998.	2.8	58
90	Construction of Porous Mo ₃ P/Mo Nanobelts as Catalysts for Efficient Water Splitting. Angewandte Chemie, 2018, 130, 14335-14339.	1.6	58

#	Article	IF	CITATIONS
91	In situ Polymerization of Multi-Walled Carbon Nanotube/Nylon-6 Nanocomposites and Their Electrospun Nanofibers. Nanoscale Research Letters, 2009, 4, 39-46.	3.1	57
92	Water-Dispersible, Sulfonated Hyperbranched Poly(ether-ketone) Grafted Multiwalled Carbon Nanotubes as Oxygen Reduction Catalysts. ACS Nano, 2012, 6, 6345-6355.	7.3	57
93	B-Doped Graphene as an Electrochemically Superior Metal-Free Cathode Material As Compared to Pt over a Co(II)/Co(III) Electrolyte for Dye-Sensitized Solar Cell. Chemistry of Materials, 2014, 26, 3586-3591.	3.2	57
94	Semimetallic Transport in Nanocomposites Derived from Grafting of Linear and Hyperbranched Poly(phenylene sulfide)s onto the Surface of Functionalized Multi-Walled Carbon Nanotubes. Macromolecules, 2008, 41, 7423-7432.	2.2	56
95	The oxidation mechanism of highly ordered pyrolytic graphite in a nitric acid/sulfuric acid mixture. Carbon, 2013, 52, 493-498.	5.4	56
96	In situ grafting of carboxylic acid-terminated hyperbranched poly(ether-ketone) to the surface of carbon nanotubes. Polymer, 2007, 48, 4034-4040.	1.8	54
97	Highly Conducting and Flexible Few-Walled Carbon Nanotube Thin Film. ACS Nano, 2011, 5, 2324-2331.	7.3	54
98	Cloud-like graphene nanoplatelets on Nd _{0.5} Sr _{0.5} CoO _{3â~'î́} nanorods as an efficient bifunctional electrocatalyst for hybrid Li–air batteries. Journal of Materials Chemistry A, 2016, 4, 2122-2127.	5.2	54
99	A New Hyperbranched Poly(aryleneâ^'etherâ^'ketoneâ^'imide):Â Synthesis, Chain-End Functionalization, and Blending with a Bis(maleimide). Macromolecules, 2002, 35, 4951-4959.	2.2	53
100	Improved syntheses of poly(oxy-1,3-phenylenecarbonyl-1,4-phenylene) and related poly(ether–ketones) using polyphosphoric acid/P2O5 as polymerization medium. Polymer, 2003, 44, 4135-4147.	1.8	52
101	Nanocomposites based on vapor-grown carbon nanofibers and an epoxy: Functionalization, preparation and characterization. European Polymer Journal, 2010, 46, 1404-1416.	2.6	51
102	Mechanochemically driven solid-state Diels–Alder reaction of graphite into graphene nanoplatelets. Chemical Science, 2013, 4, 4273.	3.7	49
103	Metalloid tellurium-doped graphene nanoplatelets as ultimately stable electrocatalysts for cobalt reduction reaction in dye-sensitized solar cells. Nano Energy, 2016, 30, 867-876.	8.2	49
104	Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors. Carbon, 2019, 142, 89-98.	5.4	49
105	Stability of multi-walled carbon nanotubes in commonly used acidic media. Carbon, 2012, 50, 1465-1476.	5.4	48
106	Fe@Nâ€Graphene Nanoplateletâ€Embedded Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction Reaction. Advanced Science, 2016, 3, 1500205.	5.6	47
107	In-Situ Grafting of Hyperbranched Poly(ether ketone)s onto Multiwalled Carbon Nanotubes via the A3 + B2 Approach. Macromolecules, 2007, 40, 4474-4480.	2.2	46
108	Molybdenumâ€Based Carbon Hybrid Materials to Enhance the Hydrogen Evolution Reaction. Chemistry - A European Journal, 2018, 24, 18158-18179.	1.7	46

#	Article	IF	CITATIONS
109	Edge-iodine/sulfonic acid-functionalized graphene nanoplatelets as efficient electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 8690-8695.	5.2	45
110	Nanocomposites Derived from a Low-Color Aromatic Polyimide (CP2) and Amine-Functionalized Vapor-Grown Carbon Nanofibers:  In Situ Polymerization and Characterization. Macromolecules, 2007, 40, 6100-6111.	2.2	44
111	"Direct―grafting of linear macromolecular "wedges―to the edge of pristine graphite to prepare edge-functionalized graphene-based polymer composites. Journal of Materials Chemistry, 2010, 20, 10936.	6.7	44
112	Edge-thionic acid-functionalized graphene nanoplatelets as anode materials for high-rate lithium ion batteries. Nano Energy, 2019, 62, 419-425.	8.2	44
113	Edgeâ€Functionalized Graphene Nanoplatelets as Metalâ€Free Electrocatalysts for Dyeâ€Sensitized Solar Cells. Advanced Materials, 2019, 31, e1804440.	11.1	44
114	Functionalization of Carbon Nanotubes. , 0, , .		43
115	Solvent-free mechanochemical reduction of graphene oxide. Carbon, 2014, 77, 501-507.	5.4	43
116	Understanding of the capacity contribution of carbon in phosphorus-carbon composites for high-performance anodes in lithium ion batteries. Nano Research, 2017, 10, 1268-1281.	5.8	43
117	Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon, 2017, 116, 77-83.	5.4	43
118	Hyperbranched Macromolecules: From Synthesis to Applications. Molecules, 2018, 23, 657.	1.7	43
119	Organic Ferromagnetism: Trapping Spins in the Glassy State of an Organic Network Structure. CheM, 2018, 4, 2357-2369.	5.8	42
120	Nanocomposites derived from <i>in situ</i> grafting of linear and hyperbranched poly(etherâ€ketone)s containing flexible oxyethylene spacers onto the surface of multiwalled carbon nanotubes. Journal of Polymer Science Part A, 2008, 46, 3471-3481.	2.5	41
121	Wet-chemical nitrogen-doping of graphene nanoplatelets as electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 7659-7665.	5.2	40
122	Effects of process parameters and surface treatments of graphene nanoplatelets on the crystallinity and thermomechanical properties of polyamide 6 composite fibers. Composites Part B: Engineering, 2016, 100, 220-227.	5.9	40
123	Direct Synthesis of a Covalent Triazineâ€Based Framework from Aromatic Amides. Angewandte Chemie, 2018, 130, 8574-8578.	1.6	40
124	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie - International Edition, 2018, 57, 3415-3420.	7.2	40
125	Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework. Communications Chemistry, 2020, 3, .	2.0	40
126	Benzothiazole-Based Covalent Organic Frameworks with Different Symmetrical Combinations for Photocatalytic CO ₂ Conversion. Chemistry of Materials, 2021, 33, 8705-8711.	3.2	38

#	Article	IF	CITATIONS
127	One-pot purification and functionalization of single-walled carbon nanotubes in less-corrosive poly(phosphoric acid). Carbon, 2008, 46, 1841-1849.	5.4	37
128	Grafting of polyaniline onto the surface of 4â€aminobenzoylâ€functionalized multiwalled carbon nanotube and its electrochemical properties. Journal of Polymer Science Part A, 2010, 48, 3103-3112.	2.5	37
129	Unusual thermal relaxation of viscosity-and-shear-induced strain in poly(ether-ketones) synthesized in highly viscous polyphosphoric acid/P2O5 medium. Polymer, 2005, 46, 1543-1552.	1.8	36
130	A solvent-free Diels–Alder reaction of graphite into functionalized graphene nanosheets. Chemical Communications, 2014, 50, 14651-14653.	2.2	36
131	3D Macroporous Mo <i></i> C@N with Incorporated Mo Vacancies as Anodes for Highâ€Performance Lithiumâ€Ion Batteries. Small Methods, 2018, 2, 1800040.	4.6	36
132	Nanocomposite prepared from <i>in situ</i> grafting of polypyrrole to aminobenzoylâ€functionalized multiwalled carbon nanotube and its electrochemical properties. Journal of Polymer Science Part A, 2011, 49, 2529-2537.	2.5	35
133	Robust fused aromatic pyrazine-based two-dimensional network for stably cocooning iron nanoparticles as an oxygen reduction electrocatalyst. Nano Energy, 2019, 56, 581-587.	8.2	35
134	Epoxy/amineâ€functionalized shortâ€length vaporâ€grown carbon nanofiber composites. Journal of Polymer Science Part A, 2008, 46, 7473-7482.	2.5	34
135	Graphene Nanoplatelets with Selectively Functionalized Edges as Electrode Material for Electrochemical Energy Storage. Langmuir, 2015, 31, 5676-5683.	1.6	33
136	Edge-selectively antimony-doped graphene nanoplatelets as an outstanding counter electrode with an unusual electrochemical stability for dye-sensitized solar cells employing cobalt electrolytes. Journal of Materials Chemistry A, 2016, 4, 9029-9037.	5.2	33
137	Thermal behaviour of poly (phenylene sulfide) and its derivatives. Polymer, 1993, 34, 2524-2527.	1.8	32
138	Fluorine- and Hydroxyl-Terminated Hyperbranched Poly(phenylquinoxalines) (PPQs) from Copolymerization of Self-Polymerizable AB and AB2, BA, and BA2Monomers. Macromolecules, 2005, 38, 1131-1140.	2.2	32
139	Self-Controlled Synthesis of Hyperbranched Poly(ether ketone)s from A3 + B2 Approach via Different Solubilities of Monomers in the Reaction Medium. Macromolecules, 2006, 39, 9057-9063.	2.2	32
140	Synthesis and electrical properties of polyaniline/polyaniline grafted multiwalled carbon nanotube mixture via <i>in situ</i> static interfacial polymerization. Journal of Polymer Science Part A, 2010, 48, 1962-1972.	2.5	32
141	Multifunctional quinoxaline containing small molecules with multiple electron-donating moieties: Solvatochromic and optoelectronic properties. Synthetic Metals, 2012, 162, 1169-1176.	2.1	31
142	Edge‣electively Functionalized Graphene Nanoplatelets. Chemical Record, 2013, 13, 224-238.	2.9	31
143	Charge transport in graphene oxide. Nano Today, 2017, 17, 38-53.	6.2	31
144	Fused Aromatic Network Structures as a Platform for Efficient Electrocatalysis. Advanced Materials, 2019, 31, e1805062.	11.1	31

#	Article	IF	CITATIONS
145	An Overview of Celluloseâ€Based Nanogenerators. Advanced Materials Technologies, 2021, 6, 2001164.	3.0	31
146	Hyperbranched Polyphenylquinoxalines from Self-Polymerizable AB2and A2B Monomers. Macromolecules, 2005, 38, 297-306.	2.2	30
147	Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method. Review of Scientific Instruments, 2012, 83, 016103.	0.6	29
148	Vertical two-dimensional layered fused aromatic ladder structure. Nature Communications, 2020, 11, 2021.	5.8	29
149	Nylon 610/functionalized multiwalled carbon nanotube composite prepared from <i>inâ€situ</i> interfacial polymerization. Journal of Polymer Science Part A, 2008, 46, 6041-6050.	2.5	28
150	Wedging graphite into graphene and graphene-like platelets by dendritic macromolecules. Journal of Materials Chemistry, 2011, 21, 7820.	6.7	27
151	Edge-Exfoliated Graphites for Facile Kinetics of Delithiation. ACS Nano, 2012, 6, 10770-10775.	7.3	27
152	Carbon–Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems. Advanced Materials, 2017, 29, 1702747.	11.1	27
153	Surface Electronic Modulation with Hetero-Single Atoms to Enhance Oxygen Evolution Catalysis. ACS Nano, 2021, 15, 11891-11897.	7.3	27
154	Linear-hyperbranched copolymerization as a tool to modulate thermal properties and crystallinity of a para-poly(ether-ketone). Polymer, 2003, 44, 3451-3459.	1.8	26
155	Oxidative Dehydrogenation of Ethylbenzene into Styrene by Fe-Graphitic Catalysts. ACS Nano, 2019, 13, 5893-5899.	7.3	26
156	A facile approach to tailoring electrocatalytic activities of imine-rich nitrogen-doped graphene for oxygen reduction reaction. Carbon, 2017, 122, 515-523.	5.4	25
157	Edge-selective decoration with ruthenium at graphitic nanoplatelets for efficient hydrogen production at universal pH. Nano Energy, 2020, 76, 105114.	8.2	25
158	Solubilization of Carbon Nanofibers with a Covalently Attached Hyperbranched Poly(ether ketone). Chemistry of Materials, 2008, 20, 1502-1515.	3.2	24
159	Eco-friendly synthesis of graphene nanoplatelets. Journal of Materials Chemistry A, 2016, 4, 15281-15293.	5.2	24
160	Defect/Edge‣elective Functionalization of Carbon Materials by "Direct―Friedel–Crafts Acylation Reaction. Advanced Materials, 2017, 29, 1606317.	11.1	24
161	Graphene and molybdenum disulphide hybrids for energy applications: an update. Materials Today Advances, 2020, 6, 100053.	2.5	24
162	Scalable Synthesis of Pure and Stable Hexaaminobenzene Trihydrochloride. Synlett, 2013, 24, 246-248.	1.0	23

#	Article	IF	CITATIONS
163	Electrochemical activity of a polyaniline/polyaniline-grafted multiwalled carbon nanotube mixture produced by a simple suspension polymerization. Electrochimica Acta, 2011, 56, 10023-10031.	2.6	22
164	Lowâ€Temperature Conversion of Alcohols into Bulky Nanoporous Graphene and Pure Hydrogen with Robust Selectivity on CaO. Advanced Materials, 2019, 31, e1807267.	11.1	22
165	Poly(2,5-benzoxazole)/carbon nanotube composites via in situ polymerization of 3-amino-4-hydroxybenzoic acid hydrochloride in a mild poly(phosphoric acid). European Polymer Journal, 2008, 44, 1603-1612.	2.6	21
166	Processing, structure and properties of poly(ether ketone) grafted few wall carbon nanotube composite fibers. Polymer, 2010, 51, 3940-3947.	1.8	21
167	Multifunctional poly(2,5â€benzimidazole)/carbon nanotube composite films. Journal of Polymer Science Part A, 2010, 48, 1067-1078.	2.5	21
168	Hydrogen Evolution Reaction: Mechanochemically Assisted Synthesis of a Ru Catalyst for Hydrogen Evolution with Performance Superior to Pt in Both Acidic and Alkaline Media (Adv. Mater. 44/2018). Advanced Materials, 2018, 30, 1870330.	11.1	21
169	Grafting of vapor-grown carbon nanofibers (VGCNF) with a hyperbranched poly(ether-ketone). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 132, 103-107.	1.7	20
170	Preparation and Electrocatalytic Activity of Gold Nanoparticles Immobilized on the Surface of 4-Mercaptobenzoyl-Functionalized Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 1746-1751.	1.5	20
171	Unveiling the critical role of active site interaction in single atom catalyst towards hydrogen evolution catalysis. Nano Energy, 2022, 93, 106819.	8.2	19
172	Bistriphenylamine-based organic sensitizers with high molar extinction coefficients for dye-sensitized solar cells. RSC Advances, 2012, 2, 6209.	1.7	18
173	Conformational Transitions of Polymer Brushes for Reversibly Switching Graphene Transistors. Macromolecules, 2016, 49, 7434-7441.	2.2	18
174	A New Strategy for Outstanding Performance and Durability in Acidic Fuel Cells: A Small Amount Pt Anchored on Fe, N coâ€Đoped Graphene Nanoplatelets. ChemElectroChem, 2018, 5, 2857-2862.	1.7	18
175	Synthesis and photoluminescence of linear and hyperbranched polyethers containing phenylquinoxaline units and flexible aliphatic spacers. Journal of Polymer Science Part A, 2004, 42, 3587-3603.	2.5	17
176	Edge-Functionalization of Pyrene as a Miniature Graphene via Friedel–Crafts Acylation Reaction in Poly(Phosphoric Acid). Nanoscale Research Letters, 2010, 5, 1686-1691.	3.1	17
177	Boron-nitrogen-phosphorous doped graphene nanoplatelets for enhanced electrocatalytic activity. European Polymer Journal, 2018, 99, 511-517.	2.6	17
178	Synthesis and Chain-End Modification of a Novel Hyperbranched Polymer Containing Alternating Quinoxaline and Benzoxazole Repeat Units. Macromolecules, 2006, 39, 7959-7966.	2.2	16
179	Reversible adsorption of conjugated amphiphilic dendrimers onto reduced graphene oxide (rGO) for fluorescence sensing. Soft Matter, 2011, 7, 8352.	1.2	16
180	Multifunctional Conjugated Polymers with Mainâ€Chain Donors and Sideâ€Chain Acceptors for Dye Sensitized Solar Cells (DSSCs) and Organic Photovoltaic Cells (OPVs). Macromolecular Rapid Communications, 2011, 32, 1809-1814.	2.0	16

#	Article	IF	CITATIONS
181	Identifying the electrocatalytic active sites of a Ru-based catalyst with high Faraday efficiency in CO ₂ -saturated media for an aqueous Zn–CO ₂ system. Journal of Materials Chemistry A, 2020, 8, 14927-14934.	5.2	16
182	Catalyst―and Solventâ€Free Synthesis of a Chemically Stable Azaâ€Bridged Bis(phenanthroline) Macrocycleâ€Linked Covalent Organic Framework. Angewandte Chemie - International Edition, 2021, 60, 17191-17197.	7.2	16
183	Fused Aromatic Network with Exceptionally High Carrier Mobility. Advanced Materials, 2021, 33, e2004707.	11.1	16
184	Room-Temperature Free-Radical-Induced Polymerization of 1,1â€~-(Methylenedi-1,4-phenylene)bismaleimide via a Novel Diphenylquinoxaline-Containing Hyperbranched Aromatic Polyamide. Macromolecules, 2003, 36, 4385-4396.	2.2	15
185	Regioselective Chemical Modification of Fullerene by Destructive Electrophilic Reaction in Polyphosphoric Acid/Phosphorus Pentoxide. Journal of Physical Chemistry C, 2008, 112, 12188-12194.	1.5	15
186	Metalated graphene nanoplatelets and their uses as anode materials for lithium-ion batteries. 2D Materials, 2017, 4, 014002.	2.0	15
187	Efficient dispersion of singlewalled carbon nanotubes by novel amphiphilic dendrimers in water and substitution of the pre-adsorbed dendrimers with conventional surfactants and lipids. Chemical Communications, 2010, 46, 7924.	2.2	14
188	Carbon Nanomaterials: Carbon Nanomaterials for Advanced Energy Conversion and Storage (Small) Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5 14
189	Modeling, processing, and characterization of exfoliated graphite nanoplatelet-nylon 6 composite fibers. Composites Part B: Engineering, 2014, 66, 511-517.	5.9	14
190	Recent Progress in Porous Fused Aromatic Networks and Their Applications. Small Science, 2021, 1, 2000007.	5.8	14
191	Reinforcement of polystyrene using edge-styrene graphitic nanoplatelets. Journal of Materials Research and Technology, 2021, 10, 662-670.	2.6	14
192	Strategies for boosting the activity of single-atom catalysts for future energy applications. Journal of Materials Chemistry A, 2022, 10, 10297-10325.	5.2	14
193	Forming layered conjugated porous BBL structures. Polymer Chemistry, 2019, 10, 4185-4193.	1.9	13
194	Metal (MÂ= Ru, Pd and Co) embedded in C2N with enhanced lithium storage properties. Materials Today Energy, 2019, 14, 100359.	2.5	13
195	Tuning edge-oxygenated groups on graphitic carbon materials against corrosion. Nano Energy, 2019, 66, 104112.	8.2	13
196	Synthesis and polymerization of new self-polymerizable quinoxaline monomers. Journal of Polymer Science Part A, 2005, 43, 78-91.	2.5	12
197	Hyperbranched Poly(phenylquinoxalineâ^'etherâ^'ketone) Synthesis in Poly(phosphoric) Tj ETQq1 1 0.784314 rgE 2794-2803.	3T /Overloo 2.2	ck 10 Tf 50 1 12
198	Mechanochemically driven iodination of activated charcoal for metal-free electrocatalyst for fuel cells and hybrid Li-air cells. Carbon, 2015, 93, 465-472.	5.4	12

#	Article	IF	CITATIONS
199	Reinforcement efficiency of carbon nanotubes and their effect on crystal-crystal slip in poly(ether) Tj ETQq1 1	0.784314 rg	gBT ₁ /Overloc
200	Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals. Nature Communications, 2017, 8, 1599.	5.8	12
201	Thermal studies of blends of poly(phenylene sulfide) (PPS) with poly(phenylene sulfide sulfone) (PPSS) and with poly(phenylene sulfide ether) (PPSE). Polymer Engineering and Science, 1995, 35, 1016-1021.	1.5	11
202	Synthesis and Properties of Polyetherketone-block-Polybenzobisthiazole-block-Polyetherketone ABA Triblock Copolymers. Macromolecules, 2008, 41, 1196-1205.	2.2	11
203	Grafting of 4-(2,4,6-Trimethylphenoxy)benzoyl onto Single-Walled Carbon Nanotubes in Poly(phosphoric acid) via Amide Function. Nanoscale Research Letters, 2009, 4, 766-772.	3.1	11
204	Two and three dimensional network polymers for electrocatalysis. Physical Chemistry Chemical Physics, 2014, 16, 11150-11161.	1.3	11
205	Nitrogen-rich two-dimensional porous polybenzimidazole network as a durable metal-free electrocatalyst for a cobalt reduction reaction in organic dye-sensitized solar cells. Nano Energy, 2017, 34, 533-540.	8.2	11
206	Heptene-functionalized graphitic nanoplatelets for high-performance composites of linear low-density polyethylene. Composites Science and Technology, 2020, 199, 108380.	3.8	11
207	Active Site Engineering in Transition Metal Based Electrocatalysts for Green Energy Applications. Accounts of Materials Research, 2021, 2, 147-158.	5.9	11
208	Direct preparation of edge-propylene graphitic nanoplatelets and its reinforcing effects in polypropylene. Composites Communications, 2021, 27, 100896.	3.3	11
209	Effect of the carboxyl functional group at the edges of graphene on the signal sensitivity of dopamine detection. Journal of Electroanalytical Chemistry, 2021, 898, 115628.	1.9	11
210	Sponge Behaviors of Functionalized Few-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 14868-14875.	1.5	10
211	Covalently functionalized graphene with organic semiconductors for energy and optoelectronic applications. Materials Research Express, 2016, 3, 044001.	0.8	10
212	Enhanced electrocatalytic performance of Pt nanoparticles on triazine-functionalized graphene nanoplatelets for both oxygen and iodine reduction reactions. Journal of Materials Chemistry A, 2017, 5, 21936-21946.	5.2	10
213	Synthesis and thermal behavior of phenylethynyl-terminated linear and hyperbranched polyphenylquinoxalines. Journal of Polymer Science Part A, 2004, 42, 6318-6330.	2.5	9
214	Development of an improved synthetic route to an AB phenylquinoxaline monomer. Journal of Polymer Science Part A, 2005, 43, 801-814.	2.5	9
215	Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Science Advances, 2019, 5, eaax8275.	4.7	9
216	Paramagnetic Carbon Nanosheets with Random Hole Defects and Oxygenated Functional Groups. Angewandte Chemie - International Edition, 2019, 58, 11670-11675.	7.2	9

#	Article	IF	CITATIONS
217	Room-Temperature Organic Ferromagnetism. CheM, 2019, 5, 1012-1014.	5.8	9
218	Revealing Isolated Mâ^'N 3 C 1 Active Sites for Efficient Collaborative Oxygen Reduction Catalysis. Angewandte Chemie, 2020, 132, 23886-23891.	1.6	9
219	Thermally reactive phenylethynyl-terminated bis(benzylester) and bis(amide) monomers based on semi-enzymatically produced 6-phenylethynyl picolinic acid. Polymer, 2006, 47, 1197-1206.	1.8	8
220	Synthesis of linear and hyperbranched poly(etherketone)s containing flexible oxyethylene spacers. Journal of Polymer Science Part A, 2007, 45, 5112-5122.	2.5	8
221	Oneâ€Pot Purification and Iodination of Waste Kish Graphite into Highâ€Quality Electrocatalyst. Particle and Particle Systems Characterization, 2017, 34, 1600426.	1.2	8
222	Poly(arylether amides) and poly(aryletherketone amides) via aromatic nucleophilic substitution reactions of self-polymerizable AB and AB2 monomers. Journal of Polymer Science Part A, 2003, 41, 2374-2389.	2.5	7
223	Lanthanide(III) dendrimer complexes based on diphenylquinoxaline derivatives for photonic amplification. Macromolecular Research, 2013, 21, 556-564.	1.0	7
224	Forming indium-carbon (In–C) bonds at the edges of graphitic nanoplatelets. Materials Today Advances, 2020, 6, 100030.	2.5	7
225	Fused aromatic networks as a new class of gas hydrate inhibitors. Chemical Engineering Journal, 2022, 433, 133691.	6.6	7
226	Nanocatalytic Materials for Energy-Related Small-Molecules Conversions: Active Site Design, Identification and Structure–Performance Relationship Discovery. Accounts of Chemical Research, 2022, 55, 110-120.	7.6	7
227	In-Plane Oriented Two-Dimensional Conjugated Metal–Organic Framework Films for High-Performance Humidity Sensing. , 2022, 4, 1146-1153.		7
228	Selfâ€controlled synthesis of hyperbranched poly(etherâ€ketone)s from A ₂ + B ₃ approach in poly(phosphoric acid). Journal of Polymer Science Part A, 2009, 47, 3326-3336.	2.5	6
229	Macromolecular dumbbells: synthesis and photophysical properties of hyperbranched poly(etherketone)-b-polybenzobisthiazole-b-hyperbranched poly(etherketone) ABA triblock copolymers. Journal of Materials Chemistry, 2009, 19, 4172.	6.7	6
230	Molecular engineering of conjugated polymers for solar cells and fieldâ€effect transistors: Sideâ€chain versus mainâ€chain electron acceptors. Journal of Polymer Science Part A, 2012, 50, 271-279.	2.5	6
231	Immobilization of platinum nanoparticles on 3,4-diaminobenzoyl-functionalized multi-walled carbon nanotube and its electrocatalytic activity. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	6
232	Fluorine: Edge-Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-Sensitized Solar Cells and Lithium Ion Batteries (Adv. Funct. Mater. 8/2015). Advanced Functional Materials, 2015, 25, 1328-1328.	7.8	6
233	Unusually Stable Triazineâ€based Organic Superstructures. Angewandte Chemie - International Edition, 2016, 55, 7413-7417.	7.2	6
234	A Robust 3D Cageâ€like Ultramicroporous Network Structure with High Gasâ€Uptake Capacity. Angewandte Chemie, 2018, 130, 3473-3478.	1.6	6

#	Article	IF	CITATIONS
235	Direct and efficient conversion from low-quality graphite to high-quality graphene nanoplatelets. FlatChem, 2018, 12, 10-16.	2.8	6
236	Atomic tailoring of platinum catalysts. Nature Catalysis, 2019, 2, 477-478.	16.1	6
237	Edgeâ€NF _{<i>x</i>} (<i>x</i> =1 or 2) Protected Graphitic Nanoplatelets as a Stable Lithium Storage Material. Batteries and Supercaps, 2020, 3, 928-935.	2.4	6
238	Copper-assisted growth of high-purity carbon nanofiber networks with controllably tunable wettabilities. Journal of Materials Chemistry A, 2021, 9, 22039-22047.	5.2	6
239	Crystalline Porphyrazineâ€Linked Fused Aromatic Networks with High Proton Conductivity. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
240	Carboxylic Acid-Terminated Hyperbranched Polybenzoxazole and Its Polyarm-Star Block Copolymers. Macromolecules, 2009, 42, 1541-1553.	2.2	5
241	Large clusters and hollow microfibers by multicomponent self-assembly of citrate stabilized gold nanoparticles with temperature-responsive amphiphilic dendrimers. Journal of Materials Chemistry, 2012, 22, 13365.	6.7	5
242	Efficient energy transfer between amphiphilic dendrimers with oligo(<i>p</i> â€phenylenevinylene) core branches and oligo(ethylene oxide) termini in micelles. Journal of Polymer Science Part A, 2013, 51, 168-175.	2.5	5
243	Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
244	Strain-induced delamination of edge-grafted graphite. Chemical Communications, 2012, 48, 11109.	2.2	4
245	Ultrasonic Chemistry: Carbon–Heteroatom Bond Formation by an Ultrasonic Chemical Reaction for Energy Storage Systems (Adv. Mater. 47/2017). Advanced Materials, 2017, 29, 1770339.	11.1	4
246	Scalable Synthesis of Tetrapodal Octaamine. European Journal of Organic Chemistry, 2019, 2019, 2335-2338.	1.2	4
247	lron encased organic networks with enhanced lithium storage properties. Energy Storage, 2020, 2, e114.	2.3	4
248	Electrochemical Catalysts for Green Hydrogen Energy. Advanced Energy and Sustainability Research, 2021, 2, 2100019.	2.8	4
249	Catalyst―and Solventâ€Free Synthesis of a Chemically Stable Azaâ€Bridged Bis(phenanthroline) Macrocycleâ€Linked Covalent Organic Framework. Angewandte Chemie, 2021, 133, 17328-17334.	1.6	4
250	Direct conversion of aromatic amides into crystalline covalent triazine frameworks by a condensation mechanism. Cell Reports Physical Science, 2021, 2, 100653.	2.8	4
251	Synthesis of all-biomass-derived carbon nanofibers for dual-functional filtration membranes and oxygen evolution reaction electrocatalysts. Journal of Alloys and Compounds, 2022, 918, 165600.	2.8	4
252	Exfoliation of Graphite via Edge-Functionalization with Carboxylic Acid-Terminated Hyperbranched Poly(ether-ketone)s. Advanced Materials Research, 2010, 123-125, 671-674.	0.3	3

#	Article	IF	CITATIONS
253	Fused aromatic networks with the different spatial arrangement of structural units. Cell Reports Physical Science, 2021, 2, 100502.	2.8	3
254	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes. Advanced Materials Interfaces, 2021, 8, 2101373.	1.9	3
255	Neohexene graphitic nanoplatelets for reinforced low-density polyethylene. Journal of Polymer Research, 2022, 29, 1.	1.2	3
256	Carbonâ€Based Electrocatalysts for Efficient Hydrogen Peroxide Production (Adv. Mater. 49/2021). Advanced Materials, 2021, 33, .	11.1	3
257	Synthesis of phenylquinoxaline oligomers containing pendant electron-donating and electron-withdrawing groups. Journal of Polymer Science Part A, 2005, 43, 6465-6479.	2.5	2
258	Synthesis and Characterization of Poly(2,5-benzimidazole) (ABPBI) Grafted Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2009, 1240, 1.	0.1	2
259	Highly Transparent and Conductive Graphene Electrode. Advanced Materials Research, 2010, 123-125, 113-116.	0.3	2
260	Chapter 1. Conducting Polymer-based Carbon Nanotube Composites: Preparation and Applications. RSC Nanoscience and Nanotechnology, 2013, , 1-21.	0.2	2
261	Mild and Nondestructive Chemical Modification of Carbon Nanotubes (CNTs): Direct Friedel-Crafts Acylation Reaction. , 0, , .		2
262	Hydrogen Evolution Reaction: Encapsulating Iridium Nanoparticles Inside a 3D Cageâ€Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction (Adv. Mater.) Tj ETQq0 0 0 rgI	3T þ@vuerlo	ck 20 Tf 50 3
263	Graphene Nanoplatelets: Edgeâ€Functionalized Graphene Nanoplatelets as Metalâ€Free Electrocatalysts for Dye‣ensitized Solar Cells (Adv. Mater. 13/2019). Advanced Materials, 2019, 31, 1970091.	11.1	2
264	Anomalous phonon softening of G-band in compressed graphitic carbon nitride due to strong electrostatic repulsion. Applied Physics Letters, 2021, 118, .	1.5	2
265	Celluloseâ€Based Nanogenerators: An Overview of Celluloseâ€Based Nanogenerators (Adv. Mater.) Tj ETQq1 1 C).784314 3.0	rgBT /Overloo
266	Synthesis of Saddle-Shape Octaaminotetraphenylene Octahydrochloride. Journal of Organic Chemistry, 2021, 86, 14398-14403.	1.7	2
267	Grafting of Polyaniline onto the Surface of Amino-Functionalized Multi-Walled Carbon Nanotube via Interfacial Polymerization. Materials Research Society Symposia Proceedings, 2009, 1240, 1.	0.1	1
268	Electrocatalyts: Controlled Fabrication of Hierarchically Structured Nitrogenâ€Doped Carbon Nanotubes as a Highly Active Bifunctional Oxygen Electrocatalyst (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
269	Electrocatalysis: Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst (Small 40/2017). Small, 2017, 13, .	5.2	1
270	Organic Ferromagnetism: Trapping Spins in the Glassy State of an Organic Network Structure. CheM, 2018, 4, 2479.	5.8	1

#	Article	IF	CITATIONS
271	Paramagnetic Carbon Nanosheets with Random Hole Defects and Oxygenated Functional Groups. Angewandte Chemie, 2019, 131, 11796-11801.	1.6	1
272	Effect of Graphene Oxide on the Properties of Its Composite Fibers with PMMA and Nylon 6,6. Journal of the Korean Society for Composite Materials, 2011, 24, 1-4.	0.3	1
273	Extreme Enhancement of Carbon Hydrogasification via Mechanochemistry. Angewandte Chemie, 2022, 134, .	1.6	1
274	Crystalline Porphyrazine‣inked Fused Aromatic Networks with High Proton Conductivity. Angewandte Chemie, 2022, 134, .	1.6	1
275	Purification and Functionalization of Diamond Nanopowders. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	0
276	Energy Conversion: Fe@Nâ€Graphene Nanoplateletâ€Embedded Carbon Nanofibers as Efficient Electrocatalysts for Oxygen Reduction Reaction (Adv. Sci. 1/2016). Advanced Science, 2016, 3, .	5.6	0
277	Innentitelbild: Paramagnetic Carbon Nanosheets with Random Hole Defects and Oxygenated Functional Groups (Angew. Chem. 34/2019). Angewandte Chemie, 2019, 131, 11668-11668.	1.6	0
278	Fused Aromatic Network Structures: Fused Aromatic Network with Exceptionally High Carrier Mobility (Adv. Mater. 9/2021). Advanced Materials, 2021, 33, 2170063.	11.1	0
279	3D Porous Fused Aromatic Networks for High Performance Gas and Iodine Uptakes (Adv. Mater.) Tj ETQq1 1 0.78	34314 rgB 1.9	T /Overlock
280	Solution-Processable Semiconducting Conjugated Planar Network. ACS Applied Materials & Interfaces, 2022, 14, 14588-14595.	4.0	0