
Yulin Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9471269/publications.pdf Version: 2024-02-01

VIIINLEE

#	Article	IF	CITATIONS
1	Effect of Polymer Molecular Mass and Structure on the Mechanical Properties of Polymer–Glass Hybrids. ACS Omega, 2022, 7, 786-792.	3.5	3
2	Ethyl methacrylate diblock copolymers as polymeric surfactants: Effect of molar mass and composition. European Polymer Journal, 2021, 154, 110537.	5.4	3
3	Multiple Influences of Nickel Concentration Gradient Structure and Yttrium Element Substitution on the Structural and Electrochemical Performances of the NaNi _{0.25} Mn _{0.25} Fe _{0.5} O ₂ Cathode Material. Journal of Physical Chemistry C. 2021, 125, 20171-20183.	3.1	8
4	A comprehensive study of the multiple effects of Y/Al substitution on O3-type NaNi _{0.33} Mn _{0.33} Fe _{0.33} O ₂ with improved cycling stability and rate capability for Na-ion battery applications. Nanoscale, 2020, 12, 16831-16839.	5.6	13
5	Designing advanced P3-type K0.45Ni0.1Co0.1Mn0.8O2 and improving electrochemical performance via Al/Mg doping as a new cathode Material for potassium-ion batteries. Journal of Power Sources, 2020, 464, 228190.	7.8	34
6	Core–Shell Structure and Xâ€Doped (X = Li, Zr) Comodified O3â€NaNi _{0.5} Mn _{0.5} O ₂ : Excellent Electrochemical Performance as Cathode Materials of Sodiumâ€Ion Batteries. Energy Technology, 2020, 8, 1901504.	3.8	16
7	A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shell structuring. Nano Research, 2019, 12, 2460-2467.	10.4	34
8	Suppressing phase transition and improving electrochemical performances of O3-NaNi1/3Mn1/3Fe1/3O2 through ionic conductive Na2SiO3 coating. Journal of Power Sources, 2019, 429, 38-45.	7.8	34
9	Na ⁺ -Conductive Na ₂ Ti ₃ O ₇ -Modified P2-type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ via a Smart in Situ Coating Approach: Suppressing Na ⁺ /Vacancy Ordering and P2–O2 Phase Transition. ACS Applied Materials &: Interfaces. 2019. 11. 856-864.	8.0	60
10	Designing high-voltage and high-rate Li1-xNaxCoO2 by enlarging Li layer spacing. Electrochimica Acta, 2018, 273, 145-153.	5.2	23
11	Enhancing the Catalytic Activity of Co ₃ O ₄ for Li–O ₂ Batteries through the Synergy of Surface/Interface/Doping Engineering. ACS Catalysis, 2018, 8, 1955-1963.	11.2	111
12	Synthesis Method for Long Cycle Life Lithium-Ion Cathode Material: Nickel-Rich Core–Shell LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ . ACS Applied Materials & Interfaces, 2018, 10, 17850-17860.	8.0	69
13	An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability. Nano Energy, 2017, 41, 535-542.	16.0	71
14	Lithium ion Conductor and Electronic Conductor Co-coating Modified Layered Cathode Material LiNi1/3Mn1/3Co1/3O2. Electrochimica Acta, 2017, 247, 443-450.	5.2	18