Evert J Elzinga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9470533/publications.pdf Version: 2024-02-01

EVEDT | ELZINCA

#	Article	IF	CITATIONS
1	Calcium enhances adsorption and thermal stability of organic compounds on soil minerals. Chemical Geology, 2021, 559, 119804.	3.3	32
2	Thermal stability of soil organic carbon after long-term manure application across land uses and tillage systems in an oxisol. Catena, 2021, 200, 105164.	5.0	11
3	Mechanistic Study of Ni(II) Sorption by Green Rust Sulfate. Environmental Science & Technology, 2021, 55, 10411-10421.	10.0	9
4	Effects of Co doping on the structure and physicochemical properties of hausmannite (Mn3O4) and its transformation during aging. Chemical Geology, 2021, 582, 120448.	3.3	9
5	Effects of structural cobalt on the stability and reactivity of hausmannite and manganite: Cobalt coordination chemistry and arsenite oxidation. Chemical Geology, 2021, 583, 120453.	3.3	3
6	Sorption Processes in Soils and Sediments. Soil Systems, 2021, 5, 70.	2.6	2
7	The molecular insights into protein adsorption on hematite surface disclosed by in-situ ATR-FTIR/2D-COS study. Scientific Reports, 2020, 10, 13441.	3.3	38
8	Anoxic photogeochemical oxidation of manganese carbonate yields manganese oxide. Proceedings of the United States of America, 2020, 117, 22698-22704.	7.1	39
9	Effects of Ni incorporation on the reactivity and stability of hausmannite (Mn3O4): Environmental implications for Mn, Ni, and As solubility and cycling. Chemical Geology, 2020, 558, 119862.	3.3	8
10	Hausmannite as potential As(V) filter. Macroscopic and spectroscopic study of As(V) adsorption and desorption by citric acid. Environmental Pollution, 2020, 262, 114196.	7.5	15
11	Attenuated total reflectance–Fourier transform infrared study of the effects of citrate on the adsorption of phosphate at the hematite surface. Soil Science Society of America Journal, 2020, 84, 57-67.	2.2	17
12	Molecular Mechanism of Linear Polyphosphate Adsorption on Iron and Aluminum Oxides. Journal of Physical Chemistry C, 2020, 124, 28448-28457.	3.1	14
13	Vanadium-basidiomycete fungi interaction and its impact on vanadium biogeochemistry. Environment International, 2019, 130, 104891.	10.0	9
14	Cobalt Intercalated Layered NiFe Double Hydroxides for the Oxygen Evolution Reaction. Journal of Physical Chemistry B, 2018, 122, 847-854.	2.6	78
15	Effect of Zn(II) coprecipitation on Mn(II)-induced reductive transformation of birnessite. Chemical Geology, 2018, 492, 12-19.	3.3	16
16	A Comparison of the Solubility Products of Layered Me(II)–Al(III) Hydroxides Based on Sorption Studies with Ni(II), Zn(II), Co(II), Fe(II), and Mn(II). Soil Systems, 2018, 2, 20.	2.6	21
17	Effects of humic substances on Fe(II) sorption onto aluminum oxide and clay. Geochemical Transactions, 2018, 19, 3.	0.7	12
18	Structural alteration of hexagonal birnessite by aqueous Mn(II): Impacts on Ni(II) sorption. Chemical Geology, 2017, 466, 524-532.	3.3	41

Evert J Elzinga

#	Article	IF	CITATIONS
19	Formation of a mixed Fe(II)-Zn-Al layered hydroxide: Effects of Zn co-sorption on Fe(II) layered hydroxide formation and kinetics. Chemical Geology, 2017, 464, 46-56.	3.3	16
20	⁵⁴ Mn Radiotracers Demonstrate Continuous Dissolution and Reprecipitation of Vernadite (δ-MnO ₂) during Interaction with Aqueous Mn(II). Environmental Science & Technology, 2016, 50, 8670-8677.	10.0	51
21	Fe(II) sorption on pyrophyllite: Effect of structural Fe(III) (impurity) in pyrophyllite on nature of layered double hydroxide (LDH) secondary mineral formation. Chemical Geology, 2016, 439, 152-160.	3.3	28
22	Redox Reactions between Mn(II) and Hexagonal Birnessite Change Its Layer Symmetry. Environmental Science & Technology, 2016, 50, 1750-1758.	10.0	102
23	Immobilization of tetracyclines in manure and manure-amended soils using aluminum-based drinking water treatment residuals. Environmental Science and Pollution Research, 2016, 23, 3322-3332.	5.3	8
24	A Mn-54 Radiotracer Study of Mn Isotope Solid–Liquid Exchange during Reductive Transformation of Vernadite (δ-MnO ₂) by Aqueous Mn(II). Environmental Science & Technology, 2015, 49, 4310-4316.	10.0	63
25	Impacts of Aqueous Mn(II) on the Sorption of Zn(II) by Hexagonal Birnessite. Environmental Science & Technology, 2015, 49, 4886-4893.	10.0	60
26	Macroscopic and Spectroscopic Assessment of the Cosorption of Fe(II) with As(III) and As(V) on Al-Oxide. Environmental Science & amp; Technology, 2015, 49, 13369-13377.	10.0	22
27	Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site. Journal of Hazardous Materials, 2014, 264, 498-504.	12.4	144
28	Formation of Layered Fe(II)-Hydroxides during Fe(II) Sorption onto Clay and Metal-Oxide Substrates. Environmental Science & Technology, 2014, 48, 4937-4945.	10.0	49
29	In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd(II) onto hematite. Geochimica Et Cosmochimica Acta, 2013, 117, 53-64.	3.9	94
30	Influence of pH on the Reductive Transformation of Birnessite by Aqueous Mn(II). Environmental Science & Technology, 2013, 47, 10364-10371.	10.0	142
31	In Situ Attenuated Total Reflectance Fourier-Transform Infrared Study of Oxytetracycline Sorption on Magnetite. Journal of Environmental Quality, 2013, 42, 822-827.	2.0	27
32	Formation of Layered Fe(II)–Al(III)-Hydroxides during Reaction of Fe(II) with Aluminum Oxide. Environmental Science & Technology, 2012, 46, 4894-4901.	10.0	36
33	ATR-FTIR Spectroscopy Study of the Influence of pH and Contact Time on the Adhesion of <i>Shewanella putrefaciens</i> Bacterial Cells to the Surface of Hematite. Environmental Science & Technology, 2012, 46, 12848-12855.	10.0	107
34	Competitive sorption of carbonate and arsenic to hematite: Combined ATR-FTIR and batch experiments. Journal of Colloid and Interface Science, 2012, 377, 313-321.	9.4	116
35	Source and Fate of Inorganic Soil Contamination Around the Abandoned Phillips Sulfide Mine, Hudson Highlands, New York. Soil and Sediment Contamination, 2011, 20, 54-74.	1.9	1
36	Impacts of <i>Shewanella putrefaciens</i> Strain CN-32 Cells and Extracellular Polymeric Substances on the Sorption of As(V) and As(III) on Fe(III)-(Hydr)oxides. Environmental Science & Technology, 2011, 45, 2804-2810.	10.0	91

Evert J Elzinga

#	Article	IF	CITATIONS
37	Reductive Transformation of Birnessite by Aqueous Mn(II). Environmental Science & Technology, 2011, 45, 6366-6372.	10.0	169
38	Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). Journal of Hazardous Materials, 2010, 183, 145-154.	12.4	47
39	Macroscopic and spectroscopic characterization of selenate, selenite, and chromate adsorption at the solid–water interface of γ-Al2O3. Journal of Colloid and Interface Science, 2009, 340, 153-159.	9.4	71
40	Coprecipitation of chromate with calcite: Batch experiments and X-ray absorption spectroscopy. Geochimica Et Cosmochimica Acta, 2007, 71, 1480-1493.	3.9	135
41	Arsenate uptake by calcite: Macroscopic and spectroscopic characterization of adsorption and incorporation mechanisms. Geochimica Et Cosmochimica Acta, 2007, 71, 4172-4187.	3.9	187
42	Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. Journal of Colloid and Interface Science, 2007, 308, 53-70.	9.4	331
43	The Effect of Aging and pH on Pb(II) Sorption Processes at the Calciteâ^'Water Interface. Environmental Science & Technology, 2006, 40, 1792-1798.	10.0	51
44	The long-term fate of Cu2+, Zn2+, and Pb2+ adsorption complexes at the calcite surface: An X-ray absorption spectroscopy study. Geochimica Et Cosmochimica Acta, 2006, 70, 2715-2725.	3.9	104
45	A multi-scale assessment of Pb(II) sorption on dolomite. Journal of Colloid and Interface Science, 2006, 298, 20-30.	9.4	25
46	Sorption Mechanisms of Zinc on Hydroxyapatite:Â Systematic Uptake Studies and EXAFS Spectroscopy Analysis. Environmental Science & Technology, 2005, 39, 4042-4048.	10.0	75
47	The influence of pH on the kinetics, reversibility and mechanisms of Pb(II) sorption at the calcite-water interface. Geochimica Et Cosmochimica Acta, 2005, 69, 5173-5186.	3.9	47
48	Cu(II) adsorption at the calcite–water interface in the presence of natural organic matter: Kinetic studies and molecular-scale characterization. Geochimica Et Cosmochimica Acta, 2005, 69, 49-61.	3.9	84
49	X-ray Absorption Spectroscopic Evidence for the Formation of Pb(II) Inner-Sphere Adsorption Complexes and Precipitates at the Calciteâ~`Water Interface. Environmental Science & Technology, 2004, 38, 1700-1707.	10.0	83
50	Spectroscopic investigation of U(VI) sorption at the calcite-water interface. Geochimica Et Cosmochimica Acta, 2004, 68, 2437-2448.	3.9	102
51	Site-specific incorporation of uranyl carbonate species at the calcite surface. Geochimica Et Cosmochimica Acta, 2004, 68, 4799-4808.	3.9	42
52	Structural Characterization of U(VI) in Apatite by X-ray Absorption Spectroscopy. Environmental Science & Technology, 2002, 36, 3114-3117.	10.0	78
53	X-ray Absorption Spectroscopy Study of the Effects of pH and Ionic Strength on Pb(II) Sorption to Amorphous Silica. Environmental Science & amp; Technology, 2002, 36, 4352-4357.	10.0	53
54	Reactivity of Pb(II) at the Mn(III,IV) (Oxyhydr)Oxideâ^'Water Interface. Environmental Science & Technology, 2001, 35, 2967-2972.	10.0	105

#	Article	IF	CITATIONS
55	X-ray Absorption Spectroscopic Investigation of Arsenite and Arsenate Adsorption at the Aluminum Oxide–Water Interface. Journal of Colloid and Interface Science, 2001, 235, 80-88.	9.4	351
56	Nickel Sorption Mechanisms in a Pyrophyllite–Montmorillonite Mixture. Journal of Colloid and Interface Science, 1999, 213, 506-512.	9.4	81