
Jiayu Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9468843/publications.pdf Version: 2024-02-01

Ιμανιι λλαδι

#	Article	IF	CITATIONS
1	Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science, 2022, 375, 66-70.	6.0	183
2	Scalable, Ultrathin, and Highâ€Temperatureâ€Resistant Solid Polymer Electrolytes for Energyâ€Dense Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	132
3	A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Liâ€lon and Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2100372.	10.2	114
4	A Morphologically Stable Li/Electrolyte Interface for Allâ€Solidâ€State Batteries Enabled by 3Dâ€Micropatterned Garnet. Advanced Materials, 2021, 33, e2104009.	11.1	76
5	Giant tunability of interlayer friction in graphite via ion intercalation. Extreme Mechanics Letters, 2020, 35, 100616.	2.0	6
6	Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 2020, 5, 786-793.	19.8	168
7	Designing hierarchical nanoporous membranes for highly efficient gas adsorption and storage. Science Advances, 2020, 6, .	4.7	41
8	Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium–Sulfur Batteries. Nano Letters, 2020, 20, 5496-5503.	4.5	30
9	A Fireproof, Lightweight, Polymer–Polymer Solid-State Electrolyte for Safe Lithium Batteries. Nano Letters, 2020, 20, 1686-1692.	4.5	175
10	Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nature Nanotechnology, 2019, 14, 705-711.	15.6	773
11	A manganese–hydrogen battery with potential for grid-scale energy storage. Nature Energy, 2018, 3, 428-435.	19.8	325
12	Reversible and selective ion intercalation through the top surface of few-layer MoS2. Nature Communications, 2018, 9, 5289.	5.8	119
13	Catalyst-Free <i>In Situ</i> Carbon Nanotube Growth in Confined Space <i>via</i> High Temperature Gradient. Research, 2018, 2018, 1793784.	2.8	7
14	In Situ, Fast, Highâ€Temperature Synthesis of Nickel Nanoparticles in Reduced Graphene Oxide Matrix. Advanced Energy Materials, 2017, 7, 1601783.	10.2	27
15	High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode. ACS Applied Materials & Interfaces, 2017, 9, 391-397.	4.0	136
16	Treeâ€Inspired Design for Highâ€Efficiency Water Extraction. Advanced Materials, 2017, 29, 1704107.	11.1	494
17	Highly Anisotropic Conductors. Advanced Materials, 2017, 29, 1703331.	11.1	80
18	Nanocarbon Paper: Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon Paper (Adv. Mater. 23/2016). Advanced Materials, 2016, 28, 4566-4566.	11.1	3

JIAYU WAN

#	Article	IF	CITATIONS
19	Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon Paper. Advanced Materials, 2016, 28, 4684-4691.	11.1	59
20	Graphene Oxideâ€Based Electrode Inks for 3Dâ€Printed Lithiumâ€Ion Batteries. Advanced Materials, 2016, 28, 2587-2594.	11.1	590
21	Electrochemical Intercalation of Lithium Ions into NbSe ₂ Nanosheets. ACS Applied Materials & Interfaces, 2016, 8, 11390-11395.	4.0	56
22	Cut-and-stack nanofiber paper toward fast transient energy storage. Inorganic Chemistry Frontiers, 2016, 3, 681-688.	3.0	10
23	Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chemical Society Reviews, 2016, 45, 6742-6765.	18.7	363
24	A Solutionâ€Processed Highâ€Temperature, Flexible, Thinâ€Film Actuator. Advanced Materials, 2016, 28, 8618-8624.	11.1	53
25	Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nature Communications, 2016, 7, 12332.	5.8	123
26	Thermally conductive, dielectric PCM–boron nitride nanosheet composites for efficient electronic system thermal management. Nanoscale, 2016, 8, 19326-19333.	2.8	80
27	Advanced Nanomaterials for Energy-Related Applications. Journal of Nanomaterials, 2015, 2015, 1-2.	1.5	3
28	Hybridizing wood cellulose and graphene oxide toward high-performance fibers. NPG Asia Materials, 2015, 7, e150-e150.	3.8	95
29	Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy, 2015, 13, 346-354.	8.2	270
30	Sodium-Ion Intercalated Transparent Conductors with Printed Reduced Graphene Oxide Networks. Nano Letters, 2015, 15, 3763-3769.	4.5	46
31	Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 23291-23296.	4.0	123
32	In Situ Investigations of Liâ€MoS ₂ with Planar Batteries. Advanced Energy Materials, 2015, 5, 1401742.	10.2	87
33	Highly Conductive Microfiber of Graphene Oxide Templated Carbonization of Nanofibrillated Cellulose. Advanced Functional Materials, 2014, 24, 7366-7372.	7.8	94
34	Two dimensional silicon nanowalls for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 6051-6057.	5.2	70