Allison L Bayer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9468770/publications.pdf

Version: 2024-02-01

279798 276875 2,573 45 23 41 h-index citations g-index papers 47 47 47 3347 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tolerance, not immunity, crucially depends on IL-2. Nature Reviews Immunology, 2004, 4, 665-674.	22.7	733
2	Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period. Journal of Experimental Medicine, 2005, 201, 769-777.	8.5	218
3	Differential Activation of Mitogen-Activated Protein Kinase Cascades and Apoptosis by Protein Kinase C ε and δ in Neonatal Rat Ventricular Myocytes. Circulation Research, 2001, 89, 882-890.	4.5	151
4	Function of the IL-2R for Thymic and Peripheral CD4+CD25+ Foxp3+ T Regulatory Cells. Journal of Immunology, 2007, 178, 4062-4071.	0.8	142
5	A Function for IL-7R for CD4+CD25+Foxp3+ T Regulatory Cells. Journal of Immunology, 2008, 181, 225-234.	0.8	118
6	GFP-FRNK Disrupts Focal Adhesions and Induces Anoikis in Neonatal Rat Ventricular Myocytes. Circulation Research, 2002, 90, 1282-1289.	4.5	114
7	IL-2 Family of Cytokines in T Regulatory Cell Development and Homeostasis. Journal of Clinical Immunology, 2008, 28, 635-639.	3.8	89
8	High-resolution, noninvasive longitudinal live imaging of immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12863-12868.	7.1	81
9	The IL-2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation. Immunologic Research, 2013, 57, 197-209.	2.9	76
10	Title is missing!. Molecular and Cellular Biochemistry, 2003, 242, 145-152.	3.1	67
11	Cutting Edge: Allogeneic CD4+CD25+Foxp3+ T Regulatory Cells Suppress Autoimmunity while Establishing Transplantation Tolerance. Journal of Immunology, 2006, 176, 7149-7153.	0.8	66
12	Activation of focal adhesion kinase by protein kinase Cϵ in neonatal rat ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1684-H1696.	3.2	56
13	Role of protein kinase C-ε in hypertrophy of cultured neonatal rat ventricular myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 280, H756-H766.	3.2	53
14	Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. American Journal of Transplantation, 2018, 18, 590-603.	4.7	53
15	PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H695-H706.	3.2	46
16	Host CD4+CD25+ T cells can expand and comprise a major component of the Treg compartment after experimental HCT. Blood, 2009, 113, 733-743.	1.4	46
17	PYK2 Expression and Phosphorylation in Neonatal and Adult Cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2001, 33, 1017-1030.	1.9	38
18	Prevention of Autoimmune Diabetes and Induction of \hat{I}^2 -Cell Proliferation in NOD Mice by Hyperbaric Oxygen Therapy. Diabetes, 2012, 61, 1769-1778.	0.6	38

#	Article	IF	CITATIONS
19	Alterations in protein kinase C isoenzyme expression and autophosphorylation during the progression of pressure overload-induced left ventricular hypertrophy. Molecular and Cellular Biochemistry, 2003, 242, 145-52.	3.1	34
20	Transferrin receptor in T cell activation and transplantation. Journal of Leukocyte Biology, 1998, 64, 19-24.	3.3	31
21	Protein kinase CÉ>-dependent activation of proline-rich tyrosine kinase 2Âin neonatal rat ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2003, 35, 1121-1133.	1.9	31
22	Immunomodulation Followed by Antigen-Specific Treg Infusion Controls Islet Autoimmunity. Diabetes, 2020, 69, 215-227.	0.6	28
23	Smallâ€molecule modulators of the <scp>OX</scp> 40– <scp>OX40</scp> ligand coâ€stimulatory protein–protein interaction. British Journal of Pharmacology, 2014, 171, 4955-4969.	5 . 4	27
24	The Folate Cycle As a Cause of Natural Killer Cell Dysfunction and Viral Etiology in Type 1 Diabetes. Frontiers in Endocrinology, 2017, 8, 315.	3. 5	27
25	The Expanding Role of Natural Killer Cells in Type 1 Diabetes and Immunotherapy. Current Diabetes Reports, 2016, 16, 109.	4.2	26
26	In vitro platform establishes antigen-specific CD8+ T cell cytotoxicity to encapsulated cells via indirect antigen recognition. Biomaterials, 2020, 256, 120182.	11.4	25
27	Engineering an "infectious―Treg biomimetic through chemoselective tethering of TGF-β1 to PEG brush surfaces. Biomaterials, 2015, 67, 20-31.	11.4	19
28	Immunosuppressive PLGA TGF- \hat{l}^21 Microparticles Induce Polyclonal and Antigen-Specific Regulatory T Cells for Local Immunomodulation of Allogeneic Islet Transplants. Frontiers in Immunology, 2021, 12, 653088.	4.8	16
29	ANTI-TRANSFERRIN RECEPTOR MONOCLONAL ANTIBODY. Transplantation, 1998, 65, 6-9.	1.0	15
30	T-CELL ALTERATIONS IN CARDIAC ALLOGRAFT RECIPIENTS AFTER B7 (CD80 AND CD86) BLOCKADE1. Transplantation, 1998, 66, 14-20.	1.0	15
31	Quantitative assessment concerning the contribution of IL-2RÂ for superantigen-mediated T cell responses in vivo. International Immunology, 2006, 18, 565-572.	4.0	14
32	CCL21 Expression in \hat{I}^2 -Cells Induces Antigen-Expressing Stromal Cell Networks in the Pancreas and Prevents Autoimmune Diabetes in Mice. Diabetes, 2019, 68, 1990-2003.	0.6	14
33	In VivoEnvironment Necessary to Support Transplanted Donor Mouse T Regulatory Cells. American Journal of Transplantation, 2014, 14, 1032-1045.	4.7	13
34	Expansion of a restricted residual host T _{reg} â€cell repertoire is dependent on ILâ€2 following experimental autologous hematopoietic stem transplantation. European Journal of Immunology, 2011, 41, 3467-3478.	2.9	12
35	Altered homeostasis and development of regulatory T cell subsets represent an IL-2R–dependent risk for diabetes in NOD mice. Science Signaling, 2017, 10, .	3.6	12
36	Adoptive T Regulatory Cell Therapy for Tolerance Induction. Current Transplantation Reports, 2015, 2, 191-201.	2.0	9

#	Article	IF	CITATIONS
37	Differential effects of transferrin receptor blockade on the cellular mechanisms involved in graft rejection. Transplant Immunology, 1999, 7, 131-139.	1.2	6
38	T Regulatory Cell Adoptive Therapy for Tolerance Induction in Autoimmunity and Transplantation. American Journal of Transplantation, 2014, 14, 2432-2433.	4.7	4
39	ENHANCED ALLOGRAFT SURVIVAL VIA SIMULTANEOUS BLOCKADE OF TRANSFERRIN RECEPTOR AND INTERLEUKIN-2 RECEPTOR1. Transplantation, 1999, 68, 1369-1376.	1.0	3
40	CCL21 and beta-cell antigen releasing hydrogels as tolerance-inducing therapy in Type I diabetes. Journal of Controlled Release, 2022, 348, 499-517.	9.9	3
41	Alterations in protein kinase C isoenzyme expression and autophosphorylation during the progression of pressure overload-induced left ventricular hypertrophy., 2003,, 145-152.		2
42	The Role of IL-2 in the Development and Peripheral Homeostasis of Naturally Occurring CD4 + CD25 + Foxp3 + Regulatory T Cells. , 2008, , 57-76.		1
43	Surviving Host CD4+CD25+Foxp3+ Cells Following Ablative Conditioning Expand and Comprise the Major Component of the Treg Compartment during the Lymphoid Reconstitution Period Following HCT Blood, 2007, 110, 65-65.	1.4	1
44	Emerging therapeutic targets in immunosuppression: the transferrin receptor. Expert Opinion on Therapeutic Targets, 1998, 2, 41-55.	1.0	0
45	Differential activation of mitogen-activated protein kinase cascades by protein kinase C (PKC) delta and epsilon. Journal of Molecular and Cellular Cardiology, 2001, 33, A45.	1.9	O