Philipp W Simon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/946867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic characterization of carrot root shape and size using genome-wide association analysis and genomic-estimated breeding values. Theoretical and Applied Genetics, 2022, 135, 605-622.	3.6	8
2	Physicochemical properties, degradation kinetics, and antioxidant capacity of aqueous anthocyanin-based extracts from purple carrots compared to synthetic and natural food colorants. Food Chemistry, 2022, 387, 132893.	8.2	13
3	Wild carrot diversity for new sources of abiotic stress tolerance to strengthen vegetable breeding in Bangladesh and Pakistan. Crop Science, 2021, 61, 163-176.	1.8	9
4	The influence of the Or and Carotene Hydroxylase genes on carotenoid accumulation in orange carrots [Daucus carota (L.)]. Theoretical and Applied Genetics, 2021, 134, 3351-3362.	3.6	10
5	Genetic and Transcription Profile Analysis of Tissue-Specific Anthocyanin Pigmentation in Carrot Root Phloem. Genes, 2021, 12, 1464.	2.4	16
6	Development of Carrot Nutraceutical Products as an Alternative Supplement for the Prevention of Nutritional Diseases. Frontiers in Nutrition, 2021, 8, 787351.	3.7	4
7	Carrot Anthocyanins Genetics and Genomics: Status and Perspectives to Improve Its Application for the Food Colorant Industry. Genes, 2020, 11, 906.	2.4	32
8	Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype. Scientific Reports, 2020, 10, 13685.	3.3	11
9	Subspecies Variation of <i>Daucus carota</i> Coastal ("Gummiferâ€) Morphotypes (Apiaceae) Using Genotyping-by-Sequencing. Systematic Botany, 2020, 45, 688-702.	0.5	4
10	What is truth: Consensus and discordance in nextâ€generation phylogenetic analyses of <i>Daucus</i> . Journal of Systematics and Evolution, 2020, 58, 1059-1070.	3.1	11
11	Overlapping Vitamin A Interventions with Provitamin A Carotenoids and Preformed Vitamin A Cause Excessive Liver Retinol Stores in Male Mongolian Gerbils. Journal of Nutrition, 2020, 150, 2912-2923.	2.9	13
12	Crop management system and carrot genotype affect endophyte composition and Alternaria dauci suppression. PLoS ONE, 2020, 15, e0233783.	2.5	19
13	Mining for Candidate Genes Controlling Secondary Growth of the Carrot Storage Root. International Journal of Molecular Sciences, 2020, 21, 4263.	4.1	7
14	Diversity and function of terpene synthases in the production of carrot aroma and flavor compounds. Scientific Reports, 2020, 10, 9989.	3.3	23
15	Identification of an SCPL Gene Controlling Anthocyanin Acylation in Carrot (Daucus carota L.) Root. Frontiers in Plant Science, 2020, 10, 1770.	3.6	21
16	Genome-Assisted Improvement Strategies for Climate-Resilient Carrots. , 2020, , 309-343.		2
17	Cell Membrane Stability and Relative Cell Injury in Response to Heat Stress during Early and Late Seedling Stages of Diverse Carrot (Daucus carota L.) Germplasm. Hortscience: A Publication of the American Society for Hortcultural Science, 2020, 55, 1446-1452.	1.0	19
18	Extended studies of interspecific relationships in Daucus (Apiaceae) using DNA sequences from ten nuclear orthologues. Botanical Journal of the Linnean Society, 2019, 191, 164-187.	1.6	3

#	Article	IF	CITATIONS
19	Dissecting the genetic control of root and leaf tissue-specific anthocyanin pigmentation in carrot (Daucus carota L.). Theoretical and Applied Genetics, 2019, 132, 2485-2507.	3.6	27
20	Carrot Carotenoid Genetics and Genomics. Compendium of Plant Genomes, 2019, , 247-260.	0.5	14
21	The Carrot Nuclear Genome and Comparative Analysis. Compendium of Plant Genomes, 2019, , 187-204.	0.5	1
22	Carrot Organelle Genomes: Organization, Diversity, and Inheritance. Compendium of Plant Genomes, 2019, , 205-223.	0.5	0
23	Carrot Genetics, Omics and Breeding Toolboxes. Compendium of Plant Genomes, 2019, , 225-245.	0.5	3
24	Classical and Molecular Carrot Breeding. Compendium of Plant Genomes, 2019, , 137-147.	0.5	7
25	Carrot Leaves Maintain Liver Vitamin A Concentrations in Male Mongolian Gerbils Regardless of the Ratio of α- to β-Carotene When β-Carotene Equivalents Are Equalized. Journal of Nutrition, 2019, 149, 951-958.	2.9	5
26	Total Adipose Retinol Concentrations Are Correlated with Total Liver Retinol Concentrations in Male Mongolian Gerbils, but Only Partially Explained by Chylomicron Deposition Assessed with Total α-Retinol. Current Developments in Nutrition, 2019, 3, nzy096.	0.3	5
27	PTIS Potato Herbarium Transferred to WIS, the Wisconsin State Herbarium. American Journal of Potato Research, 2019, 96, 625-628.	0.9	0
28	Distributions and Conservation Status of Carrot Wild Relatives in Tunisia: A Case Study in the Western Mediterranean Basin. Crop Science, 2019, 59, 2317-2328.	1.8	12
29	Variation for Salinity Tolerance During Seed Germination in Diverse Carrot [Daucus carota (L.)] Germplasm. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 38-44.	1.0	24
30	Variation for Heat Tolerance During Seed Germination in Diverse Carrot [Daucus carota (L.)] Germplasm. Hortscience: A Publication of the American Society for Hortcultural Science, 2019, 54, 1470-1476.	1.0	11
31	Genotyping-by-sequencing reveals the origin of the Tunisian relatives of cultivated carrotÂ(Daucus) Tj ETQq1 1 C).784314 r 1.6	gBT /Overloo
32	Dissecting the Genetic Architecture of Shoot Growth in Carrot (<i>Daucus carota</i> L.) Using a Diallel Mating Design. G3: Genes, Genomes, Genetics, 2018, 8, 411-426.	1.8	25
33	An Automated Image Analysis Pipeline Enables Genetic Studies of Shoot and Root Morphology in Carrot (Daucus carota L.). Frontiers in Plant Science, 2018, 9, 1703.	3.6	29
34	Carotenoid Presence Is Associated with the Or Gene in Domesticated Carrot. Genetics, 2018, 210, 1497-1508.	2.9	75
35	Sustaining the Future of Plant Breeding: The Critical Role of the USDAâ€ARS National Plant Germplasm System. Crop Science, 2018, 58, 451-468.	1.8	91
_			_

A Cluster of MYB Transcription Factors Regulates Anthocyanin Biosynthesis in Carrot (Daucus carota) Tj ETQq0 0 0.3gBT /Overlock 10 Tf

#	Article	IF	CITATIONS
37	Entire plastid phylogeny of the carrot genus (<i>Daucus</i> , Apiaceae): Concordance with nuclear data and mitochondrial and nuclear DNA insertions to the plastid. American Journal of Botany, 2017, 104, 296-312.	1.7	46
38	Fine Mapping, Transcriptome Analysis, and Marker Development for <i>Y2</i> , the Gene That Conditions β-Carotene Accumulation in Carrot (<i>Daucus carota</i> L.). G3: Genes, Genomes, Genetics, 2017, 7, 2665-2675.	1.8	48
39	Characterization of a Genomic Region under Selection in Cultivated Carrot (Daucus carota subsp.) Tj ETQq1 1	0.784314 rş 3.6	gBT ₃ /Overloc
40	Phylogenetic Prediction of Alternaria Leaf Blight Resistance in Wild and Cultivated Species of Carrots. Crop Science, 2017, 57, 2645-2653.	1.8	3
41	Patterns of Gene Flow between Crop and Wild Carrot, Daucus carota (Apiaceae) in the United States. PLoS ONE, 2016, 11, e0161971.	2.5	16
42	13C Natural Abundance of Serum Retinol Is a Novel Biomarker for Evaluating Provitamin A Carotenoid-Biofortified Maize Consumption in Male Mongolian Gerbils. Journal of Nutrition, 2016, 146, 1290-1297.	2.9	7
43	Genotyping-by-sequencing provides the discriminating power to investigate the subspecies of Daucus carota (Apiaceae). BMC Evolutionary Biology, 2016, 16, 234.	3.2	44
44	Isolation and characterization of plastid terminal oxidase gene from carrot and its relation to carotenoid accumulation. Plant Gene, 2016, 5, 13-21.	2.3	7
45	A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nature Genetics, 2016, 48, 657-666.	21.4	432
46	SHORT HYPOCOTYL 1 Encodes a SMARCA3-like Chromatin Remodeling Factor Regulating Elongation. Plant Physiology, 2016, 172, pp.00501.2016.	4.8	22
47	Nuclear DNA content variation within the genus Daucus (Apiaceae) determined by flow cytometry. Scientia Horticulturae, 2016, 209, 132-138.	3.6	20
48	Integrated Molecular and Morphological Studies of the <i>Daucus guttatus</i> Complex (Apiaceae). Systematic Botany, 2016, 41, 479-492.	0.5	15
49	Lectotype Designation for Seven Species Names in the <i>Daucus guttatus</i> Complex (Apiaceae) from the Central and Eastern Mediterranean Basin. Systematic Botany, 2016, 41, 464-478.	0.5	10
50	Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 2015, 6, 563.	3.6	243
51	Development and validation of new SSR markers from expressed regions in the garlic genome. Scientia Agricola, 2015, 72, 41-46.	1.2	25
52	Meloidogyne incognita nematode resistance QTL in carrot. Molecular Breeding, 2015, 35, 1.	2.1	23
53	Identification and Characterization of Terpene Synthases Potentially Involved in the Formation of Volatile Terpenes in Carrot (<i>Daucus carota</i> L.) Roots. Journal of Agricultural and Food Chemistry, 2015, 63, 4870-4878.	5.2	58
54	Composition and (in)homogeneity of carotenoid crystals in carrot cells revealed by high resolution Raman imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 136, 1395-1400.	3.9	19

#	Article	IF	CITATIONS
55	A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genomics, 2014, 15, 1118.	2.8	64
56	Testing the utility of matK and ITS DNA regions for discrimination of Allium species. Turkish Journal of Botany, 2014, 38, 203-212.	1.2	9
57	Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers. Molecular Breeding, 2014, 33, 625-637.	2.1	61
58	Inheritance and Mapping of <i>Mj-2</i> , a New Source of Root-knot Nematode (<i>Meloidogyne) Tj ETQq0 0 0 r</i>	gBT /Over 2.4	lock 10 Tf 50
59	Fruit morphological descriptors as a tool for discrimination of Daucus L. germplasm. Genetic Resources and Crop Evolution, 2014, 61, 499-510.	1.6	15
60	Phylogenomics of the carrot genus (<i>Daucus</i> , Apiaceae). American Journal of Botany, 2014, 101, 1666-1685.	1.7	42
61	Morphometrics of <i>Daucus</i> (Apiaceae): A counterpart to a phylogenomic study. American Journal of Botany, 2014, 101, 2005-2016.	1.7	17
62	Nextâ€generation sequencing, <scp>FISH</scp> mapping and syntenyâ€based modeling reveal mechanisms of decreasing dysploidy in <i><scp>C</scp>ucumis</i> . Plant Journal, 2014, 77, 16-30.	5.7	90
63	Maize Genotype and Food Matrix Affect the Provitamin A Carotenoid Bioefficacy from Staple and Carrot-Fortified Feeds in Mongolian Gerbils (Meriones unguiculatus). Journal of Agricultural and Food Chemistry, 2014, 62, 136-143.	5.2	23
64	Mitochondrial atp9 genes from petaloid male-sterile and male-fertile carrots differ in their status of heteroplasmy, recombination involvement, post-transcriptional processing as well as accumulation of RNA and protein product. Theoretical and Applied Genetics, 2014, 127, 1689-1701.	3.6	23
65	Reassessment of Practical Subspecies Identifications of the USDA <i>Daucus carota</i> L. Germplasm Collection: Morphological Data. Crop Science, 2014, 54, 706-718.	1.8	19
66	Conversion of a diversity arrays technology marker differentiating wild and cultivated carrots to a co-dominant cleaved amplified polymorphic site marker Acta Biochimica Polonica, 2014, 61, .	0.5	10
67	Transcript Abundance of Phytoene Synthase 1 and Phytoene Synthase 2 Is Associated with Natural Variation of Storage Root Carotenoid Pigmentation in Carrot. Journal of the American Society for Horticultural Science, 2014, 139, 63-68.	1.0	25
68	Conversion of a diversity arrays technology marker differentiating wild and cultivated carrots to a co-dominant cleaved amplified polymorphic site marker. Acta Biochimica Polonica, 2014, 61, 19-22.	0.5	10
69	DcSto: carrot Stowaway-like elements are abundant, diverse, and polymorphic. Genetica, 2013, 141, 255-267.	1.1	15
70	Formation of Norisoprenoid Flavor Compounds in Carrot (Daucus carota L.) Roots: Characterization of a Cyclic-Specific Carotenoid Cleavage Dioxygenase 1 Gene. Journal of Agricultural and Food Chemistry, 2013, 61, 12244-12252.	5.2	43
71	Molecular mapping of vernalization requirement and fertility restoration genes in carrot. Theoretical and Applied Genetics, 2013, 126, 415-423.	3.6	56
72	Quantification of the Relative Abundance of Plastome to Nuclear Genome in Leaf and Root Tissues of Carrot (Daucus carota L.) Using Quantitative PCR. Plant Molecular Biology Reporter, 2013, 31, 1040-1047.	1.8	4

#	Article	IF	CITATIONS
73	Expression and mapping of anthocyanin biosynthesis genes in carrot. Theoretical and Applied Genetics, 2013, 126, 1689-1702.	3.6	77
74	Genetic structure and domestication of carrot (<i>Daucus carota</i> subsp. <i>sativus</i>) (Apiaceae). American Journal of Botany, 2013, 100, 930-938.	1.7	167
75	Molecular Phylogeny of <l>Daucus</l> (Apiaceae). Systematic Botany, 2013, 38, 850-857.	0.5	25
76	Horticultural Crops as a Source of Carotenoids. , 2013, , 293-301.		3
77	Against the traffic. Mobile Genetic Elements, 2012, 2, 261-266.	1.8	38
78	Using nextâ€generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. American Journal of Botany, 2012, 99, 193-208.	1.7	414
79	De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome. BMC Plant Biology, 2012, 12, 61.	3.6	114
80	Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Genetic Resources and Crop Evolution, 2012, 59, 163-170.	1.6	55
81	Daucus. , 2011, , 91-113.		24
82	Comparative FISH mapping of Daucus species (Apiaceae family). Chromosome Research, 2011, 19, 493-506.	2.2	42
83	Microsatellite isolation and marker development in carrot - genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genomics, 2011, 12, 386.	2.8	90
84	De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics, 2011, 12, 389.	2.8	178
85	Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics, 2010, 11, 569.	2.8	316
86	RoBuST: an integrated genomics resource for the root and bulb crop families Apiaceae and Alliaceae. BMC Plant Biology, 2010, 10, 161.	3.6	14
87	Extensive Variation in Fried Chip Color and Tuber Composition in Cold-Stored Tubers of Wild Potato (<i>Solanum</i>) Germplasm. Journal of Agricultural and Food Chemistry, 2010, 58, 2368-2376.	5.2	34
88	Anthocyanins in Purpleâ^'Orange Carrots (<i>Daucus carota</i> L.) Do Not Influence the Bioavailability of β-Carotene in Young Women. Journal of Agricultural and Food Chemistry, 2010, 58, 2877-2881.	5.2	14
89	SplinkBES: a splinkerette-based method for generating long end sequences from large insert DNA libraries. BioTechniques, 2009, 47, 681-690.	1.8	1
90	Ploidy manipulation of the gametophyte, endosperm and sporophyte in nature and for crop improvement: a tribute to Professor Stanley J. Peloquin (1921–2008). Annals of Botany, 2009, 104, 795-807.	2.9	51

#	Article	IF	CITATIONS
91	Serum α- and β-Carotene Concentrations Qualitatively Respond to Sustained Carrot Feeding. Experimental Biology and Medicine, 2009, 234, 1280-1286.	2.4	7
92	Characterization of a deep-coverage carrot (Daucus carota L.) BAC library and initial analysis of BAC-end sequences. Molecular Genetics and Genomics, 2009, 281, 273-288.	2.1	41
93	Diversity of DcMaster-like elements of the PIF/Harbinger superfamily in the carrot genome. Genetica, 2009, 135, 347-353.	1.1	14
94	Major QTL for carrot color are positionally associated with carotenoid biosynthetic genes and interact epistatically in a domesticatedÂA—Âwild carrot cross. Theoretical and Applied Genetics, 2009, 119, 1155-1169.	3.6	84
95	Combined α-methylacyl coenzyme A racemase/p53 analysis to identify dysplasia in inflammatory bowel disease. Human Pathology, 2009, 40, 166-173.	2.0	32
96	Bioavailability of Anthocyanins from Purple Carrot Juice: Effects of Acylation and Plant Matrix. Journal of Agricultural and Food Chemistry, 2009, 57, 1226-1230.	5.2	125
97	Antioxidant Phytochemicals and Antioxidant Capacity of Biofortified Carrots (Daucus carota L.) of Various Colors. Journal of Agricultural and Food Chemistry, 2009, 57, 4142-4147.	5.2	138
98	Bioavailability of purple carrot anthocyanins is influenced by acylation but not plant matrix effects. FASEB Journal, 2009, 23, 729.6.	0.5	0
99	Assessing phenotypic, biochemical, and molecular diversity in coriander (Coriandrum sativum L.) germplasm. Genetic Resources and Crop Evolution, 2008, 55, 247-275.	1.6	41
100	AMACR expression in colorectal cancer is associated with left-sided tumor localization. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2008, 453, 243-248.	2.8	32
101	Major cytogenetic landmarks and karyotype analysis in <i>Daucus carota</i> and other Apiaceae. American Journal of Botany, 2008, 95, 793-804.	1.7	41
102	Carrot. , 2008, , 327-357.		42
103	Molecular characterization of Kastamonu garlic: An economically important garlic clone in Turkey. Scientia Horticulturae, 2008, 115, 203-208.	3.6	18
104	Genetic characterization of Allium tuncelianum: An endemic edible Allium species with garlic odor. Scientia Horticulturae, 2008, 115, 409-415.	3.6	28
105	Early Identification of Stable Transformation Events by Combined Use of Antibiotic Selection and Vital Detection of Green Fluorescent Protein (GFP) in Carrot (Daucus carota L.) Callus. Agricultural Sciences in China, 2008, 7, 664-671.	0.6	6
106	Chromatin Structure and Physical Mapping of Chromosome 6 of Potato and Comparative Analyses With Tomato. Genetics, 2008, 180, 1307-1317.	2.9	82
107	A Chromosome-Specific Estimate of Transmission of Heterozygosity by 2n Gametes in Potato. Journal of Heredity, 2008, 99, 177-181.	2.4	46
108	Distinct Subcellular Expression Patterns of Neutral Endopeptidase (CD10) in Prostate Cancer Predict Diverging Clinical Courses in Surgically Treated Patients. Clinical Cancer Research, 2008, 14, 7838-7842.	7.0	62

Philipp W Simon

#	Article	IF	CITATIONS
109	Biofortified Carrot Intake Enhances Liver Antioxidant Capacity and Vitamin A Status in Mongolian Gerbils1,. Journal of Nutrition, 2008, 138, 1692-1698.	2.9	25
110	Bioactive compounds with high antioxidant potential in biofortified carrots do not influence provitamin A carotenoid bioefficacy in gerbils. FASEB Journal, 2008, 22, 1105.5.	0.5	1
111	β-Carotene from Red Carrot Maintains Vitamin A Status, but Lycopene Bioavailability Is Lower Relative to Tomato Paste in Mongolian Gerbils. Journal of Nutrition, 2007, 137, 1395-1400.	2.9	29
112	The DcMaster Transposon Display maps polymorphic insertion sites in the carrot (Daucus carota L.) genome. Gene, 2007, 390, 67-74.	2.2	29
113	Nuclear and cytoplasmic genome composition of Solanum bulbocastanum (+) S. tuberosum somatic hybrids. Genome, 2007, 50, 443-450.	2.0	37
114	Effect of Cooking on Garlic (<i>Allium sativum</i> L.) Antiplatelet Activity and Thiosulfinates Content. Journal of Agricultural and Food Chemistry, 2007, 55, 1280-1288.	5.2	93
115	Compatibility relations between the edible carrot Daucus carota and D.Âpusillus, a related wild species from the Argentinian Pampas. Euphytica, 2007, 159, 103-109.	1.2	8
116	Carrot. , 2007, , 161-184.		9
117	beta arotene in red carrot maintains vitamin A status in Mongolian gerbils (Meriones unguiculatus) but lycopene is more bioavailable from tomato paste. FASEB Journal, 2007, 21, A351.	0.5	0
118	Sequence homology of polymorphic AFLP markers in garlic (Allium sativum L.). Genome, 2006, 49, 1246-1255.	2.0	17
119	Bioavailability of β-carotene (βC) from purple carrots is the same as typical orange carrots while high-βC carrots increase βC stores in Mongolian gerbils(Meriones unguiculatus). British Journal of Nutrition, 2006, 96, 258-267.	2.3	32
120	Heritabilities and Minimum Gene Number Estimates of Carrot Carotenoids. Euphytica, 2006, 151, 79-86.	1.2	37
121	Master: a novel family of PIF/Harbinger-like transposable elements identified in carrot (Daucus carota) Tj ETQq1 1	0,784314 2.1	4 rgBT /Overl
122	Carrot. Genetic Resources, Chromosome Engineering, and Crop Improvement Series, 2006, , 497-518.	0.3	3
123	Molecular Tagging and Selection for Sugar Type in Carrot Roots Using Co-dominant, PCR-based Markers. Molecular Breeding, 2005, 16, 1-10.	2.1	20
124	Genetic, Physiological, and Environmental Factors Affecting Acrylamide Concentration in Fried Potato Products. , 2005, 561, 371-386.		16
125	Plasma and Urine Responses Are Lower for Acylated vs Nonacylated Anthocyanins from Raw and Cooked Purple Carrots. Journal of Agricultural and Food Chemistry, 2005, 53, 6537-6542.	5.2	166
126	Carotenoid Profiles and Consumer Sensory Evaluation of Specialty Carrots (Daucus carota, L.) of Various Colors. Journal of Agricultural and Food Chemistry, 2004, 52, 3417-3421.	5.2	149

#	Article	IF	CITATIONS
127	Lutein and \hat{l}^2 -carotene from lutein-containing yellow carrots are bioavailable in humans. American Journal of Clinical Nutrition, 2004, 80, 131-136.	4.7	45
128	Merging Carrot Linkage Groups based on Conserved Dominant AFLP Markers in F2 Populations. Journal of the American Society for Horticultural Science, 2004, 129, 211-217.	1.0	12
129	A 2.5-kb insert eliminates acid soluble invertase isozyme II transcript in carrot (Daucus carota L.) roots, causing high sucrose accumulation. Plant Molecular Biology, 2003, 53, 151-162.	3.9	28
130	Comparison of AFLPs, RAPD Markers, and Isozymes for Diversity Assessment of Garlic and Detection of Putative Duplicates in Germplasm Collections. Journal of the American Society for Horticultural Science, 2003, 128, 246-252.	1.0	84
131	Some AFLP amplicons are highly conserved DNA sequences mapping to the same linkage groups in two F2 populations of carrot. Genetics and Molecular Biology, 2002, 25, 195-201.	1.3	16
132	Title is missing!. Euphytica, 2002, 127, 353-365.	1.2	32
133	Molecular Diversity Analysis of Cultivated Carrot (Daucus carota L.) and Wild Daucus Populations Reveals a Genetically Nonstructured Composition. Journal of the American Society for Horticultural Science, 2002, 127, 383-391.	1.0	49
134	Title is missing!. Euphytica, 1999, 105, 183-189.	1.2	20
135	Diallel Analysis of Resistance in Carrot to Alternaria Leaf Blight. Journal of the American Society for Horticultural Science, 1998, 123, 412-415.	1.0	24
136	Genetic Relationships and Diversity in Carrot and other Daucus Taxa Based on Nuclear Restriction Fragment Length Polymorphisms. Journal of the American Society for Horticultural Science, 1998, 123, 1053-1057.	1.0	8
137	Plant Pigments for Color and Nutrition. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 12-13.	1.0	37
138	Early Orange Mass 400, Early Orange Mass 402, and Late Orange Mass 404: High-carotene Cucumber Germplasm. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 144-145.	1.0	17
139	Genetic analysis of pungency and soluble solids in long-storage onions. Euphytica, 1995, 82, 1-8.	1.2	32
140	Carrot. , 1993, , 479-484.		2
141	Development of a simple pungency indicator test for onions. Journal of the Science of Food and Agriculture, 1992, 60, 499-504.	3.5	13
142	Isolation and characterization of Daucus carota L. cell lines resistant to 2-deoxy-D-glucose. Plant Cell, Tissue and Organ Culture, 1991, 25, 147-152.	2.3	0
143	Multiple forms of invertase from Daucus carota cell cultures. Phytochemistry, 1990, 29, 2087-2089.	2.9	25
144	The effects of gamma irradiation on the growth and cytology of carrot (Daucus carota L.) tissue culture. Environmental and Experimental Botany, 1990, 30, 361-371.	4.2	30

#	Article	IF	CITATIONS
145	Carrots and Other Horticultural Crops as a Source of Provitamin A Carotenes. Hortscience: A Publication of the American Society for Hortcultural Science, 1990, 25, 1495-1499.	1.0	40
146	Influence of 2-deoxy-D-glucose upon growth and invertase activity of carrot (Daucus carota L.) cell suspension cultures. Plant Cell, Tissue and Organ Culture, 1989, 16, 89-102.	2.3	6
147	Analysis of genetic linkage in the cucumber. Journal of Heredity, 1987, 78, 238-242.	2.4	73
148	Carotenes in typical and dark orange carrots. Journal of Agricultural and Food Chemistry, 1987, 35, 1017-1022.	5.2	125
149	Quantifying intra-plant variation of volatile terpenoids in carrot. Phytochemistry, 1987, 26, 1975-1979.	2.9	15
150	RELATIONSHIP BETWEEN OIL DUCTS AND VOLATILE TERPENOID CONTENT IN CARROT ROOTS. American Journal of Botany, 1986, 73, 60-63.	1.7	10
151	Relationship between Oil Ducts and Volatile Terpenoid Content in Carrot Roots. American Journal of Botany, 1986, 73, 60.	1.7	9
152	Genetic variation for volatile terpenoids in roots of carrot, Daucus carota, backcrosses and F2 generations. Phytochemistry, 1982, 21, 875-879.	2.9	17
153	Genetic variation for volatile terpenoids in roots of carrot, Daucus carota, inbreds and F1 hybrids. Phytochemistry, 1982, 21, 1299-1303.	2.9	24
154	Correlations between sensory and objective parameters of carrot flavor. Journal of Agricultural and Food Chemistry, 1980, 28, 559-562.	5.2	74
155	Analysis of carrot volatiles collected on porous polymer traps. Journal of Agricultural and Food Chemistry, 1980, 28, 549-552.	5.2	46