
Chia-wei Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9468441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycan–protein interactions determine kinetics of <i>N</i> -glycan remodeling. RSC Chemical Biology, 2021, 2, 917-931.	4.1	16
2	Substrate specificities and reaction kinetics of the yeast oligosaccharyltransferase isoforms. Journal of Biological Chemistry, 2021, 296, 100809.	3.4	6
3	Selection and characterization of a SpaCBA pilus-secreting food-grade derivative of Lacticaseibacillus rhamnosus GG. Applied Microbiology and Biotechnology, 2021, 105, 1123-1131.	3.6	4
4	Immobilisation and stabilisation of glycosylated enzymes on boronic acid-functionalised silica nanoparticles. Chemical Communications, 2021, 57, 11960-11963.	4.1	11
5	Functional analysis of Ost3p and Ost6p containing yeast oligosaccharyltransferases. Glycobiology, 2021, 31, 1604-1615.	2.5	4
6	Architecture and function of human uromodulin filaments in urinary tract infections. Science, 2020, 369, 1005-1010.	12.6	81
7	Cytoplasmic glycoengineering enables biosynthesis of nanoscale glycoprotein assemblies. Nature Communications, 2019, 10, 5403.	12.8	36
8	Mechanistic reconstruction of glycoprotein secretion through monitoring of intracellular N-glycan processing. Science Advances, 2019, 5, eaax8930.	10.3	36
9	Induction of antibacterial proteins and peptides in the coprophilous mushroom <i>Coprinopsis cinerea</i> in response to bacteria. ISME Journal, 2019, 13, 588-602.	9.8	60
10	The <i>N</i> -linking glycosylation system from <i>Actinobacillus pleuropneumoniae</i> is required for adhesion and has potential use in glycoengineering. Open Biology, 2017, 7, 160212.	3.6	29
11	Chemo-enzymatic synthesis of lipid-linked GlcNAc2Man5 oligosaccharides using recombinant Alg1, Alg2 and Alg11 proteins. Glycobiology, 2017, 27, 726-733.	2.5	33
12	A biosynthetic route for polysialylating proteins in Escherichia coli. Metabolic Engineering, 2017, 44, 293-301.	7.0	31
13	Influence of protein/glycan interaction on siteâ€specific glycan heterogeneity. FASEB Journal, 2017, 31, 4623-4635.	0.5	37
14	Coprinopsis cinerea intracellular lactonases hydrolyze quorum sensing molecules of Gram-negative bacteria. Fungal Genetics and Biology, 2017, 102, 49-62.	2.1	19
15	Supercharging Reagent for Enhanced Liquid Chromatographic Separation and Charging of Sialylated and High-Molecular-Weight Glycopeptides for NanoHPLC–ESI-MS/MS Analysis. Analytical Chemistry, 2016, 88, 8484-8494.	6.5	13
16	Structural characterization of the N-linked pentasaccharide decorating glycoproteins of the halophilic archaeon <i>Haloferax volcanii</i> . Glycobiology, 2016, 26, 745-756.	2.5	35
17	Glycosylation profiles determine extravasation and disease-targeting properties of armed antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2000-2005.	7.1	36
18	Analysis of site-specific <i>N</i> -glycan remodeling in the endoplasmic reticulum and the Golgi. Glycobiology, 2015, 25, 1335-1349.	2.5	60

Chia-wei Lin

#	Article	IF	CITATIONS
19	Substrate Specificity of Cytoplasmic N-Glycosyltransferase. Journal of Biological Chemistry, 2014, 289, 24521-24532.	3.4	48
20	Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development. BMC Genomics, 2014, 15, 492.	2.8	65
21	Molecular Analysis of an Alternative N-Glycosylation Machinery by Functional Transfer from Actinobacillus pleuropneumoniae to Escherichia coli. Journal of Biological Chemistry, 2014, 289, 2170-2179.	3.4	70
22	Distribution of the Galβ1-4Gal Epitope among Birds: Species-Specific Loss of the Glycan Structure in Chicken and Its Relatives. PLoS ONE, 2013, 8, e59291.	2.5	14
23	Terminal disialylated multiantennary complex-type N-glycans carried on acutobin define the glycosylation characteristics of the Deinagkistrodon acutus venom. Glycobiology, 2011, 21, 530-542.	2.5	26
24	Proteomic identification of specific glycosyltransferases functionally implicated for the biosynthesis of a targeted glycoâ \in epitope. Proteomics, 2008, 8, 475-483.	2.2	7
25	New insights into the functions and <i>N</i> â€glycan structures of factor X activator from Russell's viper venom. FEBS Journal, 2008, 275, 3944-3958.	4.7	33
26	Precise Mapping of Increased Sialylation Pattern and the Expression of Acute Phase Proteins Accompanying Murine Tumor Progression in BALB/c Mouse by Integrated Sera Proteomics and Glycomics. Journal of Proteome Research, 2008, 7, 3293-3303.	3.7	27
27	Highly fucosylated N-glycan ligands for mannan-binding protein expressed specifically on CD26 (DPPVI) isolated from a human colorectal carcinoma cell line, SW1116. Clycobiology, 2008, 19, 437-450.	2.5	32
28	Strategic shotgun proteomics approach for efficient construction of an expression map of targeted protein families in hepatoma cell lines. Proteomics, 2003, 3, 2472-2486.	2.2	89